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f;.;ii' RESEARCH OBJECTIVES

g

;ﬁ The research completed under this AFOSR award was the continuation of
e efforts already 1initiated under Grant AFOSR-84-0004 at Northwestern
I

;ﬁ? University. The research aims at experimental and theoretical investigation
Eﬁé of the micromechanics of flow and failure of rocks, concrete, and other
:ﬁ: . related geo-materials at moderate to very high pressures and temperatures.
gé: As a result of this work, certain macroscopic nonlinear constitutive models
™

fi? have been developed, which reflect realistically the micromechanical events
ﬁ& that produce observed macroscopic nonlinear and anisotropic responses of
ék materials of this kind.

e

f§§ The theoretical work followed the principal investigator’s recent
il; effort in the micromechanical modeling of nonlinear material response. It
§.§ included calculations of microcrack initiation under overall compression,
:5: interaction between cracks, development of plastic zones and their
}h interaction with cracks, and the final failure mode of, say, rocks. In
§§ particular, attention was focused on the 1nf1uencé Bf:Ehe pressure and
V$¥ temperature on the failure mode and on the transition from brittle to
qﬁ, ductile response. Under the AFOSR-84-0004, the modeling of observed axial
i\: splitting and faulting at moderate pressures and low temperatures was
;§S completed, and through some theoretical and model experiments, a basic i
;ﬁ: understanding has been gained for the phenomenon of Dbrittle-ductile |
ég transition at elevated pressures.

't The experimental effort was carefully coordinated with the theoretical
:S one. It consisted of two parts: (1) qualitative model studies in order to
;gf identify and understand the involved micromechanics; and (2) quantitative
73§ model tests.
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ORGANIZATION OF THIS REPORT
s
This report is organized in the following manner.
oy
';:f'
::;0 In Chapter I, we list the papers that have been completed and provide a
'\
LA
A brief abstract of each paper. At the end of Chapter I, a list of scientific
articles completed under this project is given. In Chapter I, we also give
x‘ j" K
\zg
M the 1list of participants and related information. Chapters II - IV each
il
N Presents a complete research effort which, although finished, has not yet
e been published. Since Grant AFOSR-86-0035 actually constitutes the final
e :
:;:;; year support for a three-year research effort which was started at
et
W)
7’::';‘ Northwestern University under Grant AFOSR-84-0004, this report also includes
KN a discussion of work completed under Grant AFOSR-84-0004.
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CHAPTER I

RESEARCH ACCOMPLISHMENTS

1. INTRODUCTION

The description of the mechanical response of rocks, concrete, and
other related geo-materials wunder moderate to very high pressures and
temperatures is of fundamental importance to current and future
technological efforts. Many large-scale computer codes require accurate and
realistic constitutive modeling of materials of this kind. At the same
time, to be useful and effective, these models must be simple. Therefore,
it is of paramount importance first to develop an in-depth understanding of
the essential features responsible for the behavior of this kind of material
in various loading and temperature regimes, and then to seek to formulate
macroscopic constitutive models that embody the most essential
micromechanical features. In this manner, one will have a good chance of

arriving at realistic models of required simplicity.

One main feature of materials at focus here 1is that they naturally
contain many microdefects and inhomogeneities. These defects and
inhomogeneities serve as stress and strain concentrators, resulting in local
stresses which are, in general, truly three-dimensional and very large, even
when the overall applied load is one-dimensional (uni-axial) and relatively
small. The overall behavior, therefore, 1is greatly influenced by the
microstructure, and changes as the microstructure is changed in response to

the applied loads.
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e

';‘ The pressure affects the cl.'nges of the microstructure to a great
?¢: extent. At low confining pressures, the existing cracks may open under
ﬁh; tension or may undergo frictional sliding when under overall compression,

' with shear stress acting across the plane of the crack. In either case,

i&:- tension cracks develop at the tips of the pre-existing flaws, and grow in

gﬁ? the direction parallel to the maximum compression. At higher pressures, the

zﬂg growth of such tension cracks is soon arrested, but under overall applied
:‘5ﬁ loads, smaller flaws and inhomogeneities that are closely spaced begin to

jh.ﬁ interact. This leads to a different microscopic response and, therefore,
KA macroscopic failure. When the pressures are very high, local plastic flow
Y

:;3 is the major micromechanics of deformation, and the overall response, though

ghﬁ highly nonlinear and still pressure-sensitive, becomes plastic.

e

;t;f The temperature has a similar effect. At low temperatures the response

f;; is more brittle, whereas at high temperatures it is more ductile.

o

ﬂﬁﬁ Therefore, macroscopic constitutive modeling must take into account

?r:: such varied microscopic behavior patterns. The aim of the research completed
ﬁd; under this grant has been to develop theoretical micromechanical models, to
;i] verify these by quantitative and qualitative model experiments, and then to
fi& seek to develop appropriate macroscopic constitutive relations which embody

the essential microfeatures.

(i

éﬂa 2. PROGRESS

i‘" fa

e

K o

€E§!, Under Grant AFOSR-84-0004, effort has been concentrated on completing
:“i* the microscopic modeling: (1) analyzing the phenomenon of faulting under
:3;“ moderate confining presures; and (2) understanding the transition from
fele

‘. -

W brittle to ductile failure, under suitably high confining pressures, of
;ﬂ? brittle solids containing microdefects such as pre-existing cracks. This
i
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work was continued under Grant AFOSR-86-0035 at the University of
California, San Diego. Microcracking from voids in an elastic solid was
formulated and solved. In addition, nonlinear constitutive relations
associated with microcracking and damage have been developed. In the
sequel, papers completed and published under both grants, AFOSR-84-0004 and
AFOSR-86-0035, are listed together with their abstracts. In addition,
wherever appropriate, comments are made to point out the significance of the

obtained results.
2.1 Papers Published Under Grant AFOSR-84-0004:

2.1.1 H. Horii and S. Nemat-Nasser, "Elastic Fields of Interacting Inhomo-
geneities," Int. J. Solids Structures, 21 (1985) 731-745.

In this paper a rather effective method has been developed, by which
the interaction between two or among several defects in an elastic
solid can be computed on the basis of the solution of a single defect
in an infinitely extended homogeneous solid. The results are funda-
mental and allow us to estimate the failure mechanism in the presence
of 1large confining pressures where the interaction among neighbo.ing
flaws leads to faulting. The abstract of this paper is as follows.

A rather general technique -- called the "method of pseudotractions"
-- 1s presented for the calculation of the stress and strain fields
in a linearly elastic homogeneous solid which contains any number of
defects of arbitrary shape. The method is introduced and illustrated
in terms of the problems of elastic solids containing two or several
circular holes and solids containing two or several cracks, including
the cases of rows of holes or cracks. It is shown that the solution
of these and similar problems can be obtained to any desired degree
of accuracy. Furthermore, if only estimates are needed, then the
method 1is capable of yeilding closed-form analytic expressions for

many interesting cases, e.g. the stress intensity factors at the
crack tips.

2.1.2 H. Horii and S. Nemat-Nasser, "Brittle Failure in Compression:
Splitting, Faulting, and Brittle-Ductile Transition," Philosophical
Transactions of the Royal Society of London 319, No. 1549 (1986)
337-374.

This is a comprehensive paper which we hope will have a lasting
effect on the wunderstanding of the mechanics of brittle failure in
compression and the mechanism of brittle-ductile transition at
elevated pressures. Considerable effort has been required in
preparing and publishing this paper.
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;12‘ The micromechanics of brittle failure in compression and the

o transition from brittle to ductile failure, observed under increasing
‘JQ confining pressures, are examined in the light of existing
'*ﬁ experimental results and model studies. First, the micromechanics of
Bt axial splitting and faulting is  Dbriefly reviewed, certain

mathematical models recently developed for analysing these failure

o, modes are outlined, and some new, simple closed-form analytic
: ﬁ- solutions of crack growth in compression and some new quantitative
D model experimental results are presented. Then, a simple two-
’”j- dimensional mathematical model is proposed for the analysis of the
. brittle-ductile transition process, the corresponding elasticity
' boundary-value problem is formulated in terms of singular integral
'ﬂ:h equations, the solution method is given, and numerical results are
gyﬁ obtained and their physical implications are discussed. In addition,
ﬁ}ﬁ a simple closed-form analytic solution is presented and, by comparing
A its results with those of the exact formulation, it is shown that the
e analytic estimates are reasonably accurate in the range of the
brittle response of the material. Finally, the results of some
S laboratory model experiments are reported in an effort to support the
L mathematical models.
;”Q:
L In addition, the following papers have been published:
iF 2.1.3 8. Nemat-Nasser and H. Horii, "Micro-mechanics of Fracture and
AN Failure of Geo-materials in Compression," Proceedings of the ICF 6th
;1» Int. Conf. on Fracture, New Delhi, 1India, December 4-10, 1984;
}j?; Pergamon Press, 1984, Vol. 1-R, pp. 515-524,
‘O
N Recent analytical results on non-coplanar crack growth in elastic
solids under far-field compressive stresses, are used to examine the
A micromechanics of brittle failure in compression. The three distinct
A failure modes -- axial splitting, faulting, and the transition from
o brittle to ductile response -- observed under axial compression for
fﬁ:- different confining pressures, are discussed in terms of simple
9 plausible micro-mechanical models. The failure strength and the

orientation of failure planes, as well as the stress ratio which
marks the birttle-ductile transition, are estimated and compared with
published data on various rocks, arriving at good correlations. 1In
addition, certain model experiments which seem to support the
analytical models, are examined.

2.1.4 S. Nemat-Nasser and H. Horii, "Rock Failure in Compression," Int. J.

Engng. Sci., Letters in Appl. and Engrg. Sciences, 1984, Vol. 22, No.
8-10, pp. 999-1011.

Mechanisms of rock failure in compression -- axial splitting and
shear failure -- are studied, based on a microscopic consideration.
Analytical models are constructed and model experiments on plates of
a brittle polymer are performed. It is shown that unstable growth of
tension cracks which propagate from the tips of pre-existing cracks
and curve towards the maximum compressive direction, 1is the
fundamental mechanism that produces axial splitting of a uniaxially
compressed rock specimen, whereas shear failure of a triaxially
compressed specimen is a result of sudden growth of tension cracks at
tips of a suitably arranged interacting set of microcracks. The

LI
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simultaneous out-of-plane unstable growth of a suitably oriented row
N of cracks is analyzed and, on the basis of this model, the variations
y of the "ultimate strength" and the orientation of the overall fault
% plane with the confining pressure are estimated. The brittle-ductile
) transition is discussed with the aid of a model which includes both
i tension crack extension and plastic zone development from the pre-

& existing cracks.
:: ‘ 2.1.5 H. Horii and S. Nemat-Nasser, "Compression-Induced Microcrack Growth
K in Brittle Solids: Axial Splitting and Shear Failure," J. Geophys.

Res., 1985, Vol. 90, No. B4, pp. 3105-3125.

o Micromechanisms of rock failure (axial splitting and shear failure)
are examined in 1light of simple mathematical models motivated by
microscopic observations. The elasticity boundary value problem
associated with cracks growing from the tips of a model flaw is
solved. It is shown that under axial compression, tension cracks
nucleate at the tips of the preexisting model flaw, grow with

< increasing compression, and become parallel to the direction of the
5 maximum far-field compression. When a lateral compression also
Y exists, the crack growth is stable and stops at some finite crack
N length. With a small lateral tension, on the other hand, the crack

i growth becomes unstable after a certain crack length is attained.
i This is considered to be the fundamental mechanism of axial splitting

observed in uniaxially compressed rock specimens. To model the

mechanism of shear failure, a row of suitably oriented model flaws is
N considered and the elasticity boundary value problem associated with
s the out-of-plane crack growth from the tips of the flaws is solved.
;? It is shown that for a certain overall orientation of the flaws the
growth of the out-of-plane cracks may become unstable, leading to

7 possible macroscopic faulting. On the basis of this model the
", variations of the "ultimate strength” and the orientation of the
K overall fault plane with confining pressure are estimated, and the
'ﬁ results are compared with published experimental data. In addition,

the results of a set of model experiments on plates of Columbia resin
CR39 containing preexisting flaws are reported. These experiments

W are specifically designed in order to show the effect of confining
:' pressure on the crack growth regime. The experiments seem to support
J qualitatively the analytical results.
0
; 2.1.6 S. Nemat-Nasser and H. Horii, "Mechanics of Brittle Failure in
N Compression,” Computers & Structures, 1985, Vol. 20, No. 1-3, pp.
W 235-237.
? The mechanics of brittle failure in compression is reviewed in 1light
$ of experimental observations and some recent results from
" micromechanical modeling. The axial splitting, faulting and the
transition from brittle to ductile response are discussed. It is !
&) concluded that the descending portion of the stress-strain curve
;2 (i.e. the strain-softening), often observed for materials of this
iﬁ kind, does not represent a continuum response: therefore, many

numerical calculations in the strain-softening range should be viewed
he with caution. '
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2.2 Work Completed Under Grant AFOSR-86-0035

Three major papers and a short note were completed, submitted for
publication, and since have been accepted. Two of these papers,
items 2.2.1 and 2.2.2, relate to the failure of porous solids in

compression. The results apply to porous rocks and to ice where
bubbles and cavities are responsible for initiating microcracking
under compressive loads. The third paper, item 2.2.3, is a major

contribution in obtaining overall nonlinear constitutive relations
for brittle solids in compression. The effects of microflaws are
formulated and the corresponding overall response is computed. The
short note is an interesting illustration of the complex overall
material response in the presence of microcracks.

"A Unified Analysis of Various Problems Relating to Circular Holes
with Edge Cracks" Engineering Fracture Mechanics, in press.

A unified method of analysis is developed for various problems
relating to elastic plates containing circular holes with edge
cracks. The method is based on the analysis of a unit rectangular
region containing a circular hole with edge cracks, where the
boundary conditions of the outer edges are suitably adjusted in order
to treat various problems including periodic arrays of holes with
edge cracks. The method is applied to five problems, and accurate
values of the stress intensity factors are obtained. These
analytical values of the stress intensity factors are fitted by
polynomials which are convenient for practical applications.

"On Mechanics of Crack Growth and Its Effects on the Overall Response
of Brittle Porous Solids," Acta Metallurgica, in press.

This paper is concerned with crack growth in brittle porous solids
under compression and 1its effects on the overall response of the
material. As a mathematical model, we consider an elastic solid
containing a zig-zag array of circular holes with a pair of edge
cracks (two-dimensional problem), and solve this problem by wusing a
theory which gives numerical results as accurate as desired. Based
on the analytical results, we discuss the crack growth process and
estimate the effective Young's moduli as well as the stress-strain
relation for porous solids. Our computations show that the cracks
emanating from the poles of the circular holes extend in the axial
direction and grow -- in most cases in a stable manner, but for
certain cases in an unstable manner during an intermediate loading
state -- as the overall applied uniaxial compression increases,
reaching a certain limiting maximum length. This maximum crack
length strongly depends on the ratio of the hole radius to the hole
spacing in the loading direction. The effective Young's modulus in
the direction of the crack growth 1is basically determined by the
initial porosity, and is little affected by the crack length or its
growth regime, i.e., whether stable or unstable. We find that the
overall axial stress-strain curve remains monotonic, exhibiting no
peak stress or strain softening, as cracks extend in the axial
direction and reach their 1limiting length with increasing axial
stress.
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. 2.2.3 "A Microcrack Model of Dilatancy in Brittle Materials," Journal of
o Applied Mechanics, in press. :
Shd
B
:,§' For a solid containing preexisting flaws, overall nonlinear
A constitutive relations are developed on the basis of a model which
” endows a preexisting flaw with frictional and cohesive resistance,
N and which includes nucleation and growth of tension cracks at the
B preexisting flaw, as it deforms wunder the action of an overall
oy compressive load. The preexisting flaws may be randomly distributed

N or may have an initial preferential distribution. They may be of
e varying sizes and orientations. Even when the flaws are randomly
distributed, their preferential activation, and the nucleation and

ol growth of tension cracks at preferential flaws, render the overall
%‘t response of the solid highly anisotropic. As a first step toward a
'_:"ll more complete constitutive micromechanical modeling, a dilute
2“ distribution of preexisting flaws is assumed, rate constitutive
i) relations are developed for loading and unloading, which include

hysteresis, dilatancy, and other characteristics observed

RN experimentally in rocks, ceramics, concrete, and similar brittle

materials. A number of illustrative examples are worked out, and
the results are compared to relevant experimental observations.
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process, considerably improved and expanded, and the final manuscripts were
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.44
¥

s grgw g
L SN
IS G S

=k

1S o B. Rowshandel and S. Nemat-Nasser, "A Mechanical Model for
Deformation and Earthquake on Strike-Slip Faults," Pure and
Applied Geophysics 124, No. 3 (1986) 532-566.

-
-
-
)

. -9 .

.

n 0 [P ] K o . id L Y Y - O oS
Lot AT T A On S A SIS L Y2 R DN 3 Ml

WA S I PN 22 A s

!‘."e, 'Q:Vt

ML AN AT A A 2" ‘lr,lp "ln PR, n 4% 4%



gt 3. LIST OF PUBLICATIONS COMPLETED
I“ ’
wie
:ﬁk H. Horii and S. Nemat-Nasser, "Elastic Fields of Inhomogeneities,” Int.
s J. Solids Structures, 21 (1985) 731-745.
AN
e H. Horii and S. Nemat-Nasser, "Brittle Failure in Compression:
gt Splitting, Faulting, and Brittle-Ductile Transition," Philosophical
% Transactions of the Royal Society of London 319, No. 1549 (1986)
?,W 337-374. (Considerable effort has been devoted to completing this
f h manuscript, which is a rather comprehensive account of our work
'ﬁé supported by AFOSR).
ot S. Nemat-Nasser and H. Horii, "Micromechanics of Fracture and Failure
ﬁ@ of Geomaterials in Compression," Proceedings of the ICF 6th Int.
;%‘ Conf. on Fracture, New Delhi, India, December 4-10, 1984: Pergamon
" Press, 1984, Vol. 1-R, pp. 515-524.
t.f't
LN

" S. Nemat-Nasser and H. Horii, "Rock Failure in Compression," Int. J.
" Engrg. Sci., Letters in Appl. and Engrg. Sciences, 1984, Vol. 22,
‘aﬁ. No. 8-10, pp. 999-1011.
ﬁ?? H. Horii and S. Nemat-Nasser, "Compression-Induced Micro-Crack Growth
?h in Brittle Solids: Axial Splitting and Shear Failure,” J. Geophys.
T Res., 1985, Vol. 90, No. B4, pp. 3105-3125.
:;3 S. Nemat-Nasser and H. Horii, "Mechanics of Brittle Failure in
.A;‘ Compression," Computers & Structures, 1985, Vol. 20, No. 1-3, pp.
31 235-237.
¢ o
o M. Isida and S. Nemat-Nasser, "A Unified Analysis of Various Problems
oy Relating to Circular Holes with Edge Cracks," Engineering Fracture
:g; Mechanics, in press.
K 3’ M. Isida and S. Nemat-Nasser, "On Mechanics of Crack Growth and Its
?fﬁ Effects on the Overall Response of Brittle Porous Solids," Acta
‘j Metallurgica, in press.
e
{:' S. Nemat Nasser and M. Obata, "A Microcrack Model of Dilatancy in

4

R e R S

Brittle Materials," Journal of Applied Mechanics, in press.

- 10 -




4. PROFESSIONAL PERSONNEL ASSOCIATED WITH THE RESEARCH EFFORT; DEGREES
AWARDED

o Principal Investigator: §S. Nemat Nasser

Postdoctoral Research Associates and Visiting Scholars:

MAKOTO ISHIDA, Visiting Professor, (Kyushu University, Fukuoka, and

¢ ¢
;F5 Kurume Institute of Technology, Kurume, Japan)
D)
ﬂ%ﬁ MAKOTO OBATA, (Postdoctoral Research Associate, Department of Applied

Mechanics and Engineering Sciences, University of California, San
Diego, La Jolla, California)

Qf« BENJAMIN LORET (Research Associate, Ecole Polytechnique, Palaiseau,
s'y France)

MORTEZA M. MEHRABADI (Associate Professor, Department of Mechanical

A Engineering, Tulane University, New Orleans, Louisiana)
Qﬂl DONG-TEAK CHUNG (Postdoctoral Research Associate, Department of
}&é Applied Mechanics and Engineering Sciences, University of
e California, San Diego, La Jolla, California)
Qg‘ Graduate Students Degrees Awarded (AFOSR SUPPORT)
W
:&f H. HORII, Ph.D., Northwestern University
et MUNEO HORI, M.S., Northwestern University

JAE-YOUN CHANG, , M.S., Northwestern University

o
ﬂﬁk Other Graduate Students (Partially supported)
m-ﬁ‘.
)
Hy JAE-YOUN CHANG
Rk MUNEO HORI

3
o Other Researchers Who Have Been Involved in the Project:
l“'l

¢
%5. JOHN E. STARRETT, Principal Development Engineer
v: ‘.‘{

".:Z’
L ‘t
R
\"5
D""
..:'.
s *‘?
e
.:56:(‘
"'!" .
in"'tg
oo
;,A;I

0
A |
) -1 - |

A TR "'.““' ) ,;;1\ ¥ ;T? ‘.'.?_"4"‘_-.-‘,?1‘,'f.-‘!'3 3 ‘(";.iu?hh/"-"' .T;"“'-; "»“-.‘?h?f’-af' !

WA . O 6 ) et W G
Heﬂec.{:qwghzﬁ‘t‘u‘aﬂi’ffpﬂﬁﬁﬁt&?“?ks%Fts



.;r; 5. INTERACTIONS (COUPLING ACTIVITIES)

BTN A. Participation of Principal Investigator at Meetings -- Papers
'Q“t Presented; Lectures at Seminars (Under AFOSR-86-0035 only)

ACA "Generalization of the Mandel-Spencer Double Slip Model," International
;ﬁl Symposium on Physical Basis and Modeling of Finite Deformation of
3} Aggregates, Paris, France, September 30-October 2, 1985.

SR "Failure in Compression,” Ecole Polytechnique, Palaiseau, France,
September 30-October 2, 1985.

O "Failure in Compression," University of California, Santa Barbara,
Q&' March 3, 1986.

"Micromechanically Based Constitutive Modeling of Inelastic Response of
Solids," Proceedings of the ARO Workshop on Constitutive Models,

ﬁ?f Virginia Polytechnic Inst. March 24-26, 1986.
L )
e
sdﬁ' "Failure in Compression, " U.S. Army Research Office Workshop on
LAt y
e Dynamic Deformation and Fracture, Leesburg, Virginia, May 12-15,
o0 1986.
&ﬁ‘ "Failure in Compression,” NSF Workshop, Assessment of Experimental
'y Techniques Applicable to Rock Fracture, Park City, Utah, May 29-30,
ol 1986.
e
Rt "Mechanics of Failure in Compression,"” Invited Plenary Contribution,
‘ Paper 211, Sixth European Conference on Fracture, Amsterdam, The
;ési Netherlands, June 15-20, 1986.
W
QS' "Mechanics of Failure in Compression," Tohoku University, Sendai,
PTAN Japan, June 27, 1986.
R
|“.l
ﬂ;“ B. Consultative and Advisory Functions to Other Agencies or Laboratories
i — - -
' i
{‘a - -Member of DARPA Panel on Material Modeling and Large Scale Computa-
ENX g g
-Sv tions, 1983-Present
'n"-al
International Symposium on --- Member of Scientific Committee
T Physical Basis and Modellin - Co-Editor of Proceedings
;“ y 4 g
Sy of Finite Deformation of - Synthesizer
{?ﬁ Aggregates
}ﬁé Paris, France
September 30-October 4, 1985
N CISM Seminar, Simplified --- Synthesizer
@5 Analysis of Inelastic Struc- - Organizer of Discussions
0 tures Subjected to Statical
fﬁq or Dynamical Loadings
b Ecole Polytechnique, Paris,
France, October 7-10, 1985
o
&%
‘::;
Q‘,Ql
00 - 12 -

t
2. -t

LT 1A% Ol S R AN, YOO X X100 0 T A L
2O o i o mb.;"" 5 ‘O’-‘."d’.‘u‘.&"\‘.‘,a’“'i“z‘i’g‘:hli‘ plage¥r B e ~:'§"‘l'="'t\=}né "'"*‘*"k"z .“‘*"' e “" ARG

kAR

ey




CHAPTER II
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CHAPTER 11

A UNIFIED ANALYSIS OF VARIOUS PROBLEMS RELATING TO

CIRCULAR HOLES WITH EDGE CRACKS

M. Isida* and S. Nemat-Nasser

Department of Applied Mechanics and Engineering Sciences

University of California, San Diego, La Jolla, CA 92093

Abstract

A unified method of analysis is developed for various problems
relating to elastic plates containing circular holes with edge cracks. The
method is based on the analysis of a unit rectangular region containing a
circular hole with edge cracks, where the boundary conditions of the outer
edges are suitably adjusted in order to treat various problems including
periodic arrays of holes with edge cracks. The method is applied to five
problems, and accurate values of the stress intensity factors are obtained.
These analytical values of the stress intensity factors are fitted by

polynomials which are convenient for practical applications.

* Present address: Department of Mechaical Engineering, Kurume Institute
of Technology, 2228 Mukuno Kamitsumachi, Kurume 830, Japan.
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#(z), ¥(2)

$,(2), ¥(2)

Pa(5p)

qm(sm)

NOMENCLATURE

Cartesian coordinates

complex coordinate = x + iy

length and width of rectangular region
aspect ratio of rectangular region = %
hole radius

normalized hole radius = E

crack length

normalized crack length = 4

crack length parameter = (1+L)'1

Young's modulus of material

Poisson’s ratio of material

k= i,;: (plane stress), = 3 -4v (plane strain)

E

shear modulus = E?I::;

stress components in Cartesian coordinates

reference stress

principal stresses at infinity

g
ratio of principal stresses at infinity = ;Z (01,‘0)
1

resultant force components in Cartesian coordinates

displacement components in Cartesian coordinates

complex stress potentials
complex stress potentials in Laurent expansion
densities of distributed force doublets

weighting functions of force doublet densities
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M subdivision number of crack

B K Nl subdivision number of side EF

;3::1‘; N, subdivision number of side FG

1 length of intervals on side EF

2 length of intervals on side FG

- K Mode I stress intensity factor

%) X
Ll F, dimensionless stress intensity factor - ———
':::' oy (ne)

K
vy F dimensionless stress intensity factor = —I—-g
5',,;" ao(ra)

NN KIc critical stress intensity factor
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1. INTRODUCTION

Since the pioneering work of Griffith ([1], it has been commonly
accepted that brittle failure is often caused by the formation and growth of
tension cracks which usually nucleate at miéro-defects such as preexisting
cracks, voids, and other micro-heterogeneities. Recent analytical and
experimental work [2-11] has clearly shown that, even under overall
compressive  farfield 1loads, brittle failure is wusually a result of
nucleation and growth of micro-tension cracks. An important class of
micro-defects which may be ‘a source of crack nucleation, is micro-cavities
which are commonly present in most solids such as rocks, ceramics, metals,
bones, etc. To be able to examine the physical consequences of strength
degradation by crack nucleation and growth at preexisting cavities, one
requires a solution of the problem of crack growth from the walls of
cavities under prescribed farfield stresses. 1In the two-dimensional case,
the elasticity problem of cracks extending from the edges of a circular hole
has been solved by Bowie [12] for an infinitely extended medium. The more
general problem of cracks emanating from an elliptical hole in a plane has
been treated by several authors [13-16] where some of the results have been
put in a form convenient for design purposes [17,18].

In this paper we consider a class of elasticity problems relating to
circular holes with edge-cracks, and solve these problems by a unified
method. This method is such that the results can be rendered as accurate as
desired. The basic problem is formulated for a rectangular region
containing a circular hole with two edge-cracks emanating from the hole.

Various cases are then studied by adjusting the boundary conditions on the

outer boundaries of the rectangular region. In this manner, solutions are




obtained for a finite region, for a strip containing an array of holes with
edge-cracks, and for a sheet containing doubly-periodic holes and edge-
cracks. These results are fitted by polynomials which are convenient for

practical applications.
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THEORETICAL ANALYSIS

1N

.1 Description of the problem

Consider a rectangular region containing a central circular hole and a
pair of equal cracks, emanating from the hole in the x-direction; see
Fig.1l-1 for notation and definition of various geometric quantities. A
variety of problems including periodic arrays of holes with edge cracks can
be analysed by adjusting the boundary conditions of this rectangular region.
We <consider a class of problems for which the boundary conditions are
symmetric about both coordinate axes. We solve this class of problems using
suitably symmetric stress potentials defined on the first quadrant, OEFGO in
Fig.1-1, and by enforcing the desired boundary conditions.

This paper deals with the following five problems:

(1) Uniform normal loads along EF and along FE, (Fig.1-1).

(2) Infinite strip in the x-direction with a periodic array of holes
and edge cracks aligned in the x-direction. This case corresponds to
a rectangular specimen subjected to uniform displacement u without
shear along E?, (Fig.1-2).

(3) 1Infinite strip in the y-direction with a periodic array of holes
and edge cracks aligned in the x-direction. This case corresponds to
a rectangular specimen subjected to uniform displacement v without
shear along EE, (Fig.1-3).

(4) 1Infinite solid with doubly periodic array of holes and edge cracks,
(Fig.1-4).

(5) Infinite solid with zig-zag periodic array of holes and edge

cracks, (Fig.1-5).
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%p The conditions on the outer edges depend on the problem, and are
:' summarized in Table 1. In this table, u and v are the components of the
nag

'%' displacement, Px and Py are those of the resultant force transmitted across
z: an arbitrary path from a fixed point (xo,yo) to a typical point (x,y) ,
"f : and %9 and 0, are the applied stresses in the x- and y-directions,
?:E respectively. The cracks are assumed to be traction-free for all the
§<i_ treated problems. Hence, the results are valid for combinations of 9y and

9, that satisfy this assumption.

N
o dn : p
o 2.2. Basic relations
J'ﬁ
‘2%;
%‘, In plane problems of elasticity, components of the stress, the
>
_':_ displacement and the resultant force with respect to the Cartesian
¢ '.A'_‘
W coordinates are expressed in terms of two complex potentials, ¢(z) and ¥(z),
3
and their derivatives, as follows:
o
:_-,:‘ o +ax
R —Y—i— = 2Re[¢'(2)]
‘\
‘,j (1)
) _az_a)i. + iT - E¢"(z) +¢'"(Z)
5., 2 Xy
e
=
1,00 \ - .
oW 2G (u-1iv) = k¢(Z) - 2¢'(2) - ¥’ (2) (2)
W,
g P +iP_ = - $(Z) - 26’ (2) - $'(2) (3)
o y X
e
- where G is the shear modulus, and x is defined in terms of Poisson’s ratio,
- v, as follows:
RS
Nt
o 3-v .
bc} L ey (plane stress), = 3 -4v (plane strain) (&)
" 4
€l
e The analysis is performed by superposing two stress states. The first
'..
s
1) .
R
B -2 -
Q

g:"

s
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one 1is introduced in order to satisfy the outer boundary conditions, and is
represented by the complex potentials ¢1(z) and wl(z) having singularities
within the hole. The second stress state is properly singular at crack
tips, and is realized by distributing suitable force doublets along the
cracks.

The above two stress states are established in such a manner that they
automatically satisfy the traction-free conditions at the hole. These
stress states include unknown parameters which are then determined from the

boundary conditions on the c¢racks and the outer edges of the rectangular

region.

2.3. Displacement and resultant force due to ¢l(z) and ¢1(z)

The complex potentials ¢l(z) and wi(z) for the first stress state are

expressed as the following Laurent series:

N-1 -(2n+1) 2n+1
¢1(z) - nEO[anz +M2nz ]
(3)
, N-1 -(2n+1) 2n+1
¢1(z) - nEO[Dznz +K2nz ]
The coefficients F, , M, , D and K (n=0,1,2,---,N-1) are real due to
2n 2n 2n 2n

the symmetry of the problem. N is to be fixed at the stage of the boundary
collocation procedure, as discussed in Section 2.5.

The traction-free conditions at the hole require that

- . 2
D 2Moa

0
4n 2 4n+2
D2n - -(2n-1)K2n_2a - (2n) M2na (l<sn=<sN-1) (6)
4n+2 4n+4
%n- d%na -Qnﬂ)MhHZa (0<ns<N-1)
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i,

Substituting Eqns. (6) into Eqns. (5), the complex potentials for the

first stress state are obtained as follows:

N-1 2n+l 4n_-(2n-1) 4n+2 -(2n+l)
¢1(z) - Hoz + nEO[MZn(z -(2n+l)a 2z )-Kzna z 1
¥ (z) = -2M. a2z ' + Nil[x (2201 (on41) gttt (2043), N
1 o8 neo' 2n

4n+22-(2n+1)

—Mzn(Zn)za ]

The boundary conditions of the present problems have been given in
Table 1 in terms of stress and displacement components. But in the
analysis, the stress conditions are replaced by those of the resultant force
in order to increase the accuracy of the numerical results [19,20].

Using Eqns.(7) in Eqns.(2) and (3), we have the following expressions

for the displacement and the resultant force components:

N-1
2G(u - iv)(l) - Mo(Za2 +(n DzZ)+ 21 M [x22n+1-(2n+1)222n

+@ne)a ™z D 001y 727 2ny2 2472, (20HD),
N-1 i
+ 5 K [_22n+1 bn+2 (2n+1)+(2n+1)iz (2n+2)}
n=0 2n
+(2n+1)a4n+az'(2n+3)] (8.1)
-1 = N-1 _2n+l - 2n
- 2 - . .
(Pyd-iPx)(l) M,(2a%z 2Z)+ n§1 M, (-2 (2n+1)zz
+(2n+1)a*™(z” @D 2n-1)227%) w(2n)? 2472, (20D
N-1 ] ]
+ T K [_22n+1+a£m+2{z (2n+1)_(2“+1)iz (2n+2)}
n=0 2n
+(2n+1)84n+42-(2n+3)] (8.2)
- 23 -

- -p o - AP T W 200
5,50 “’:"',}1.:"=‘?h‘ 3 ;‘D' \'.‘“..h‘ .'» “.‘ S ,j“ A3 :"’) .\}:ﬂ N 'O'i' l ‘t” ‘!‘) .""‘“h ¥, ||", e 5| U l.t a‘\.l-.;_ o ..‘t.g b.\’z‘g‘n‘ N




e RS, Tt SRR TN T TR R R SRR T T T T T

The above expressions 1include 2N unknown coefficients M2n and K2n

(n=-0,1,2,---,N-1) to be determined from the boundary conditions.

2.4. Displacement and resultant force due to force doublets

The second stress state is realized by distributing force doublets of
arbitrary density on the cracks. The force doublets are established from
stress states for concentrated forces acting in an infinite solid which
contains a circular hole, and, therefore, the traction-free conditions at
the hole edge are satisfied automatically. Expressions for the displacement

and the resultant force components due to distributed force doublets have

been derived by Isida and Noguchi [21], and are as follows:

K 2 /2 =
! 26 (u-iv),, == p(s) | -l m 11
“ (2) 2x m ' m Sm¥1 SV (s -wl)2
h m=1-2/2 n n
¥ 1 PG Wk T S L , ) (G oy @ 1
‘ + - - = - = - . 7 -2(w. -w,)(W,-w,) S5 73
; SpVo So %, (sm w2) (sm w2) 1 72 1 272 (sm w2)
i
b a 1
+2(rz+dy) —=
. z (sm+w3) (9.1)
X
' 2 2/2 _
v 1 1 1 1™
(Py + iPx)(2) T 2x E: I pm(sm) [ s Wy T s vy + (s -wl)2
w=1-2/2 n
‘ 1 1 ¥ v Y179 _ az 1
N + —= + - 5 + - 7 ~2(w,-w, ) (W, -w )5 T3
sm w2 sm w2 (sm w2) (sm wz) 1 2 1 27z (sm wz)
7
: 82 1
+ 2(-z+—) ———5]
) z (sm+w3) (9.2)

where pm(sm) (m=1,2) are unknown density functions of the force doublets,
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W
W
Sty
B
:::: and the subscript m takes 1 for the right and 2 for the left crack,
v,:‘
':f'f respectively; the following notation is also used (see Fig. 2):
v::’: a?
e 172 % Y27z *o,m’ Y3~ *o,m
A
g ,z
o4 - fad -
"' X0 m a+3 (m=1) (10)
’l:( xO, --a-3 (m=2)
“g;:
. The density functions pm(sm) in Eqns. (9) are expressed as [22]
e (s)) = a (s ) (P -s2)" (11)
B Pp'®p 9y Sp 2 m
A
ol
et where the weighting functions q (s ) are regular.
‘ Eqn. (11) actually defines force doublet densities with singularities
vl
; at both ends, sm-i£/2. It applies to the present problem, provided the
te
"'f"e resultant force conditions (instead of stress conditions) are used, as can
;(;:* be seen by the accurate results obtained even with small number of of
o
v
?:: subdivisions shown in Tables 2 to 4 of Section 3.2.
Jale
\
f",f: It is obvious from symmetry that
J
I (-s,) = q,(sy) (12)
oy 128°% 1°%1
e:‘:
"
q::: Thus ql(sl) is the only unknown function in the second stress state.
"g 2.5. Boundary conditions based on resultant force and displacement
0, A piecewise linear approximation will be used to estimate the unknown
:i”o weighting function ql(sl). For the right crack, this is shown in Fig. 3,
|/ . -
:::$ where equally spaced intervals are used. Eqns. (9.1) and (9.2) now reduce
oW .
':"4 to linear expressions in fJ (j - 1,2,---,M) which are the values of the
:::Z weighting function at the ends of these intervals,
o
JA N
'l-:‘.; - 25 -
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We now have 2N unknown coefficients in the first stress state and M
unknown weights, fj' in the second stress state to be determined from the
boundary conditions. Since both stress states satisfy the traction-free
conditions on the hole, we have only to consider the boundary conditions on
the crack and at the outer edges of the first quadrant. These conditions
are satisfied by means of a boundary collocation procedure based on the
displacements and the resultant forces. In the numerical computatiomns, the
traction-free conditions of the cracks are replaced by M relations, and
those of the outer edges by 2N relations.

The traction-free conditions on the cracks are common to all considered
problems. In order to obtain M relations from the traction-free conditioens

on crack AlBl (stated in terms of resultant force components P_), we divide

2! DB"'

-, DM are the mid-points of previously defined equal intervals (Fig.3).

this crack into M unequal intervals, D1D2’ D2D3,--- DMDM+1’ where D

Then the traction-free conditions are:

— Dys1
Along crack A._B, : [P ] = 0 (k = 1,2,---,M) (13)
171 y Dk

To impose the boundary conditions at the outer edges, EF and FG are

divided 1into N1 and N2 equal intervals, respectively, as shown in Fig. 4.
The corresponding interval lengths then are

c b
17N, My (14

The integer N in Eqn. (8) 1is chosen such that

N = N1 + N2 (15)

Now the boundary conditions for all five problems given in Table 1 are

replaced by the following relations in term of the resultant force and the
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displacement components:

Problem (1)

S S
= . k+l k+1 .
Along EF : [Px]s - alhl, [Py]S 0 (k 1,2, 'Nl)
k k
(16)
— Sia1 Ska1
Along FG : [PX]S - 0, [Py]S - 02 h2 (k - N1+1sN1+21"‘,N)
k k
Problem (2)
- Sk+1 F Ske1
Along EF : [u]S -0, [Px]E- o, ¢ [Py]S =0 (k= 1,2,---,N1)
k k
— Skl Sk+1
(17)
Problem (3)
— Sk+1 Skal
k
— Sk+1 Sk+1 G
Along FG : [lesk - 01 [V]sk - 0) [Py]F-azb (k - N1+1)N1+2,"-’N)
(18)
Problem (4)
— Sk+1 F Sk+1
Along EF : [u]sk -0, [Px]E- o, ¢ [Py]sk =0 (k= 1.2,-'-.N1)
. Sk+1 Ske1 G
Along FG : [Px]Sk - 0- [V]Sk - 01 [Py]F-azb (k - N1+1'N1+2;"')N)
(19)
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Problem (5)

For convenience, N2 1s taken to be an even integer, say 2N3, and the

following relations (20.1) and (20.2) are used :

S S
Along EF : [u] =0, [P} ¥ 0 (k=1,2,---,3))
K Y Sy 1
S S S S
Along FG : [P ] k+1l _ (P ] NA+1-k' (P ] k+l (P ] N4+1-k
y Sk y SN -k X Sk bd SN -k
S S 4 S S 4
k+1 N, +1- k+1 N +1-k
[alg ™ = ulg W e L e N
k Na-k k Na-k
N3 - N2/2, N4 -2N1 + N2+1 (k-N1+1,N1+2,---,N1+N3)
(20.1)
For the total forces:
F H G
[PX]E = [PX]G - zalc s [Py]F - Uzb (20.2)
- 28 -
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Rt 3. NUMERICAL ANALYSIS

3.1. Dimensionless stress intensity factors

K The unknown quantities K2n’ H2n (n=-0,1,2,---,N-1) and fj (j=1,2,--

-,M) are determined by solving the simultaneous relations consisting of
fa Eqns. (13) and one of Eqns.(16) to (20) depending on the considered problem.
[

The stress intensity factor at the crack tip is then calculated by

K, = fy 7 (21)

(a) Compression in the x-direction : o, = -0 g
(b) Tension in the y-direction o0, =0, o, =0

o where % is a positive reference stress.

QQc‘ Calculations have been performed for all possible combinations of the
;.4 following values of the geometric parameters: b/c = 2, 1.75, 1.5, 1.25, 1,
N 1/1.25, 1/1.5, 1/1,75, 1/2; ¢/a =5, 6, 7, 8, 9, 10; L/a = 0.5, 1., 1.5,
o 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0.

SN The numerical results are summarized in terms of two dimensionless
¢ stress intensity factors: one is based on the hole radius; and the other is
based on the crack length. These dimensionless stress intensity factors
LS are:

i g(1:%) g(1,%)

ng’x) I ¢ F(i,x) _ 1

, i S -0, 0,=0 22
DB Ta oo (ra)® (0)=-09410,=0) (22a)

" k(L) g(1.y)
St Fgi,y) | gty I

, -0, - 22b
‘ ao(,g)‘! a ao(ﬂa)h ( % 997 % ) ( )

e (i=1, 2,3, 4,5)
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Here, superscript i denotes the problem number, and superscript x or Yy
designates the loading direction.

As a/c tends to zero, the quantities in Eqns. (22) for all five
problems should converge to the results for an infinite solid containing a
hole with edge cracks. The results for this limiting problem are also given

in terms of the following dimensionless stress intensity factors:

( g (X) g (x)
X) 1,0 (x) 1,0
( <) W
y) I ) 1,0
FOY L L0 ) L0, g, 23b
£,07 5 (xty 2,07 G (ra)® (o 72=9%) (23b)
K K
1,0 1,0
Fo0 " o(x) ' Fa,0 = w (01 =-0gs 9p=20y) (23¢)

where subscript x or y designates the loading direction, and F! 0 and Fa

denote the values for biaxial loadings.

3.2. Accuracy of numerical results

The accuracy of the numerical results would be improved by increasing
subdivision numbers M, N1 and NZ' It is however desirable to use minimum
values for these quantities, which still provide needed accuracy.

Reasonable values of M have been determined from test calculations of

an infinite solid. Table 2 gives typical results for £/a=0.4. As is

At seen, any M larger than 3 seems to give reliable values with errors less
o 2
h:, than one per cent. Calculations also have been done for several finite
L w
:"'lf

regions. Based on this information, M is taken to be 7 to 10 depending on

jﬁﬁl "~ the region geometry.
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Other series of test calculations also have been done to determine
)

[R )

"" reasonable values for N1 and N2. Tables 3 and 4 give the values of

ng,x) and Fii'y) for various values of N1 (-N2), where b=c, a/c=0.2,

oY T

2/a=2 and M=6. The convergence is excellent, and Nl, N2 larger than 4

P
ke )

are likely to give reliable values with errors less than one per cent. On

.
-

the basis of the above and similar results for other configurations, Nl and

L -
o’
-

i

N2 are chosen to be 5 to 10 depending on the geometry.

..

-
Py

Thus the number of unknowns to be determined from the boundary

‘o conditions is confined to less than 50 with good accuracy.

- -
e 0 N ol
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:Q 4. NUMERICAL RESULTS AND DISCUSSION
R
’ 4.1. Infinite solid with a hole and cracks
:\. i.
«2%
¢
b% Reliable solutions are available for an infinite solid containing a
Y
b hole with edge cracks. However, we have reanalysed this problem because of
4 s its importance as a common limiting case for all other considered problems.
:%: The results also give useful information on the accuracy of the basic
X method, and help to fix the value of M to be used for each problem.
ahd The numerical values of ng% and Fiy% are fitted by the following
. ' '
.f: five-term polynomials for the range 0 < f/a < 7:
K
- (a) Compression in the x-direction
- (x) 1
- x) . . 2 . 3 4 -
‘4_ FI,O 0.0177 - 0.23298 + 1.00658 1.075183% + 1.40328¢ (B 1+2/a)
i
(24a)
;j\
:*A (b) Tension in the y-direction
s
b (y) _ 2 . 3 4 -1
FI,O 1.0377 + 0.00618 + 2.56338 3.03608% + 2.78148% (8 l+2/a)
N
.tk (24b)
..
N

(c) Biaxial loading

The results for biaxial loading are obtained by the linear combination

ﬁa# of Eqns. (24a) and (24b) as follows:
L,
0 - o p(X) (¥)y o . g - - h
K KI,O (n2)7? ( ale,o + 02F2,0) al(wl) F2,0 al(wa) Fa,O
G (24c¢)
K. (x) (y) by
‘. - - -
o Fpo~ Fpo " 2Fplor Fao = Fpo#/a)7% X =0ay/0)  (0,#0)
e
..
A
- The numerical values from Eqns. (24) based on the present analysis are
L)
3
o
< -3
—
i ] 2

. AP \ , ok MR oAb AN K 00 1A B T o , . ot e
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o in excellent agreement with previous reliable values [17] shown in Table 5.

Fz 0 is wusually convenient in theoretical considerations, but in
*

&2 analysing the test results, Fa 0 would be more useful since it is normalized
; 9 ’
»:§ by the hole radius which remains unchanged during crack extension.

o

. 4.2. Polynomial expressions of stress intensity factor

.

A
by
ﬁ For applications, it is desirable to represent the numerical results by
0

e simple analytical expressions. We consider polynomial expressions in terms
e of the following dimensionless geometric parameters:
:

DG

t,‘;
" -2 - -1 - < - 2

i::: a c '’ ﬂ 1+L ’ 7 b (L a ) (25)
L Our computations show that the polynomial expressions must be such that
L)
W

sz the following conditions are satisfied:

A

(1) As afc -+ 0, the results for all five problems converge to those

8

O

?» for an infinite solid, independent of the values of b/c.

5
!\; (ii) Better accuracy is obtained by fitting polynomials to F! than to

i F_.
s‘g; a

)

Y (iii) For the tension applied in the y-direction (case (b)), the stress
"; intensity factor becomes unbounded as a+4-+b.
L) .

- The numerical values of Fii’x) and Fil’y) for problems (1) to (5) are
W
;E: fitted by polynomials of the three parameters defined by Eqns. (25). The
:;‘ results are summarizad as follows:
)
V$ (a) Compression in the x-direction ( 91 = "9y, 9y = 0)

’;a
i: Case when b = ¢
b
e (0 g0 ¢ 8 § x(L.DgPgas (26a.1)
LYY 2 £,0 p21 q=0 s=0 " Ppgs
-

Qﬁ - 33 -
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Case when b < ¢

(i,x) - (x) (i,2) poq_s 26a.2
FI FI,O +pi1 qio sio qus a By (26a.2)

(b) Tension in the y-direction ( oy = 0, 79, = 9, )

Case when b > ¢

(1,y) _ (N (i,1) p,q_s _at 1
L 72,0 +pgl qzo sio Ypgs @AY /(1= (26b.1)

Case when b < ¢

i,y) (y) % (i,2) poq. s atd %
F = F + Y a v (1-—) (26b.2)
(c) Biaxial loading

The stress intensity factor for the biaxial loading is given by a

linear combination of Eqns. (26a.1) to (26b.2) as follows:

S GO LT RN A R IR (26¢)

Note that Xpqg and Ypqg for p~0 are not included in Eqns. (26a.1)
to (26b.2) in order to ensure that Fii’x) and ng.y) tend to the results for
an infinite solid as a=a/c-+0. Furthermore, Eqns. (26b.1) and (26b.2)
are formulated in such a manner that the stress intensity factor becomes
unbounded as a+ £-+b.

Eqns. (26) yield the dimensionless stress intensity factor FZ' To

obtain Fa from these equations, we use the expression
2\ k
F, - F,(2) (27)
The coefficients in the polynomials (26a.l) to (26b.2) for problems (1)
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to (5) are given in Tables 6 to 10, respectively.

:' The numerical values from these expressions are compared with those
& from direct analysis in Figs. 5 to 9-2, for typical ca=.s of the five
treated problems. The agreement is quite good, and the proposed polynomials

“ (26) are useful in applications.
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gt 5. SUMMARY AND CONCLUSIONS

A unified method of analysis for various problems relating to elastic
R plates containing circular holes with edge cracks is developed. The method
Jq‘ is based on the analysis of a unit rectangular region containing a circular
hole with edge cracks, where the boundary conditions of the outer edges are
Y suitably adjusted in order to treat various problems including periodic
33“ arrays of holes with edge cracks.

The method is applied to five important problems, and accurate values

-
3

of the stress intensity factors are obtained. These values are fitted by

o
A RA

polynomials which are convenient for practical applications.
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.
#
;: Figure captions
'.:’v
> Fig. 1-1 Uniform normal loads along sides EF and FG.
8
“\ .
1%’ Fig. 1-2 Strip with a periodic array of holes and cracks in the
X-direction.
}s Fig. 1-3 Strip with a periodic array of holes and cracks in the
]
‘%: y-direction.
i)
B Fig. 1-4 Infinite solid with doubly periodic array of holes and cracks.
»2 Fig. 1-5 Infinite solid with zig-zag periodic array of holes and cracks.
I
e Fig. 2 Geometry of a circular hole with edge cracks.
by
> Fig. 3 Subdivision of crack for numerical evaluation of weighting
:; function.
b
:i Fig. 4 Subdivision of outer edges for numerical evaluation.
1
. Fig. S F(U) for problem (1), b/c=2.
% Fig. 6 F;Z,x) for Problem (2), b/c=2.
~l
» Fig. 7 F§3’y) for Problem (3), b/c=1,
A (4,%)
i Fig. 8-1 Fa ! for Problem (4), b/c=1.
a Fig. 8-2 Fi“'y) for Problem (4), b/c=1,
g: Fig. 9-1 Fis’x) for Problem (5), b/c =2.
"l
4 Fig. 9-2  F'Y) for Problem (5), b/c=2.
U
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Table 1 Boundary conditions of outer edges

Problem Side EF Side FG

l“ g =0 g =0

", (L)
T
i Xy Xy

P (2) [P )g = o1¢ r._ =0

g =0 vV = const.

d (3) r.,=0 [P lp =~ apb

b Txy
M4

B\ u = const. VvV = const.

h ] F G
(4) [Pl = 0¢ (2,15 = o,b

Loy ! rxy-O rxy-O

l:: __“______i.__._...m..-4...._;.-..-.-“_..—“_.......----_ . .. -

). = (o

$
Y -
' u = const. (o )]_

F H
[Px]E - [Px]G - 201c (

Txy X xy)b-x

pe
o X b
e (5) Ty = O [ulg = (uly

[vlg = Vg

G
[Py]F - 02b
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;% Table 2 Variation of Fixgand ngé with various M

B for 2/a = 0.4

2,0 £,0

.332
.334
.337
.338
.339
.339
.340
.339
.339
.339
.339

.949
.955
.964
.968
.969
.969
.974
.969
.972
.973
971

0
13:. M F(x) p(y)
"
:'

eNoNoNoRoNoNoNoNoNoNal
e 2 e s

e
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i Table 3 Variation of Fii’x) for the case when

X b/c=1, a/c=0.2, £/a=2, M=6

N.,N i=1 i=2 i=3 i=4 i=5

. 2426
.2001
.2156
.2110
.2130
.2120
.2125
.2120 .0516 .0796 .0182
.2119 .0517 .0795 .0182

" - e b s e L s
“.

.0425
.0528
.0514
.0517
.0516
.0516
.0516

.0733
.0795
.0793
.0797
.0795
.0796
.0795

.0142
.0185
.0182
.0182
.0182
.0182
.0182

i 0.0346

0.0345

[eNeNeNeNeNoNole N

. 0.0345

O WO~V WN
[N oNoNoNeNeoNaNoo]
[NeNeNoNeoNo o]
[ocNoNeoNoNoNeNoNo Re
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T Table 4 Variation of F;i'y) for the case when

>4
=z

.
-
-
.
-
)
-

, A=l =2 i=3 | i4 | -5
ot \ : SRS SEUU
e ©2.490  2.191 .265 ’ .070

.781 .075
.863
.829
.848
.837
.843
.838
.839

2
2
2.077 | 2.148
2.077
i 2,077 | 2.146
P2

2

2

2

.077
077 | 2.146
.077
.077

N
w
v
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Table 5 Comparison of F from Eqns. (24) and previous analysis.

2,0
(infinite solid)

A=0 A=0.1 A =0.2

L Eqn. (24a) | Ref.[17] Eqns. (24) | Ref.[17] Eqns.(24)  Ref.[17]

. R S : A
0.01 | 1.079 1.074 0.750 0.747 0.422 | 0.420
0.02 ©  1.040 1.041 0.718 0.718 0.397 , 0.396
0.04 0.968 0.968 0.659 0.658 0.350 0.348
0.06 ' 0.903 0.902 0.605 0.603 0.307 . 0.305
0.08 0.843 0.842 0.555 0.554 0.268 | 0.266
0.10 0.788 0.788 0.510 0.509 0.232 0.231
0.15 0.672 0.671 0.414 0.413 | 0.15%6 | 0.155
0.20 0.577 0.577 0.336 0.336 0.096 i 0.095
0.25 0.500 0.500 0.273 0.273 0.046 | 0.046
0.30 0.436 0.437 0.221 0.221 0.006 - 0.006
0.40 0.338 0.339 0.142 0.142 -0.055 -0.055
0.50 0.268 0.269 0.085 0.086
0.60 0.217 0.217 0.044 0.044
0.80 0.148 0.147 -0.011 -0.010 |
1.00 0.106 0.105 ! , l
1.20 0.079 | 0.077 i | :
1.50 0.053 ; 0.051 ! ‘ =
2.00 0.029  0.029
3.00 0.011 0.011
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:"‘ Table 6 Coefficients of polynomials (26.1) to (26.2)
.50
:, for Problem (1) ( x3qs’ Y3qs =-0)
t'; .'
'
" . ,
o
,,;-: p q s x(L: 1) x(1:2) v D v(1,2)
o pas pas pas | _pas
ﬁ% 1 0 0 -7.4715E-01 | -2.4215E+00 5.7012E+00 2.2056E+01
K 1 0 1 2.3737E+00 3.8558E+00 2.6320E+01 | -4.3445E+01
1 0 2 -5.3173E-01 | -1.4332E+00 | -2.5258E+01 1.9673E+01
;ﬁ* 1 0 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Ebr 1 1 0 -1.9973E+00 1.8117E+00 | -1.2146E+02 | -5.6748E+01
3 _ 1 11 -6.1593E+00 | -2.0771E+00 | -5.4035E+01 1.2814E+02
3;, 1 1 2 3.2767E+00 6.2703E-01 1.3601E+02 | -5.8552E+01
:3 1 1 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
. 1 2 0 2.4177E+401 0.0000E+00 3.5453E+02 | -1.5351E+02
ﬁ\* 1 21 -1.7526E+01 0.0000E+00 5.5240E+01 1.9721E+02
5:: 1 2 2 -2.9660E+00 0.0000E+00 | -3.6728E+02 | -8.9138E+01
-~ 1 2 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
"5 1 3 0 -2.0392E+01 0.0000E+00 | -1.6091E+02 2.7113E+02
Ky 1 31 6.2492E+00 0.0000E+00 | -3.0702E+02 | -4.1494E+02
1 3 2 1.7132E+01 0.0000E+00 4.7679E+02 1.9012E+02
?q 1 3 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
¢ﬁ 2 0 0 4,5632E+00 3.3112E+01 5.5254E+01 | -1.2963E+02
?‘ 2 0 1 -2.5129E+00 | -5.0744E+0L | -1.8464E+02 2.8193E+02
,&g 2 0 2 -1.4135E+01 1.8632E+01 2.9894E+01 | -1.6561E+02
Ll 2 0 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
J 2 1 0 -5.0766E+00 | -2.6862E+01 4.3826E+02 8.1074E+02
AT 2 1 1@ 4.0657E+01 4 .4293E+01 | -1.0866E+02 | -1.5208E+03
: O 2 1 2 5.2748E+01 i -1.3934E+01 3.7345E+402 8.1247E+02
e 2 1 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
? 2 2 0, -1.1439E402 0.0000E+00 | -2.3193E+03 | -5.1824E+02
My 2 21 E 8.4083E+01 0.0000E+00 2.5729E+03 8.2030E+02
2 2 2, -1.2571E+02 0.0000E4+00 | -1.6524E+03 | -4.7128E+02
;ﬁ‘ 2 2 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
‘Qﬁ 2 3 0 ; 1.4261E+02 0.0000E+00 1.8022E+03 | -4.2400E+02
izi 2 3 1 2 -1.0036E+02 0.0000E+00 | -1.8598E+03 9.4728E+02
:?# 2 3 2} 4.1161E+01 0.0000E+00 8.7650E+02 | -4.6230E+02
i 2 3 3! 0.0000E+00 0.0000E+OO{ 0.0000E+00 0.0000E+00
?~
b
;:‘
g
l.'i
ke
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Table 7 Coefficients of polynomials (26a.l) to (26b.2)

: for Problem (2)
¥4 - T e I - s
o q s %21 x(2:2) v<2:1) ¥(2:2)
& pgs Pqs __Pgs Pqs
0 1 0 0 4.4980E-02 | 1.7911E-O01 |-3.4397E+01 [-9.7220E-01
1 01 1.4205E+00 | 1.1863E-02 | 1.3797E+02 | -6.0517E+00
1 0 2 | -1.3067E+00 |-4.6399E-03 |-1.2161E+02 | 1.2914E+00
1 0 3 0.0000E+00 | 0.0000E+00 | 1.6083E+00 | 0.0000E+00
r 1 10 1.0267E400 | 1.0965E+00 | 1.5796E+02 | 1.9387E+01
o 1 1 1 | -8.1648E+00 |-2.6270E+00 |-4.8040E+02 | 1.4744E+01
2 1 1 2 7.6367E+00 | 7.6423E-01 | 4.0362E+02 | -6.0552E+00
N 1 1 3, 0.0000E+00 | 0.0000E+00 |-2.3961E+01 | 0.0000E+00
K 1 2 0 ; -2.3842E+01 | -1.3997E+00 | -4.7568E+02 | -5.1005E+01
1 2 1 6.1551E+01 | &4.7890E+00 | 2.540SE+02 | -1.5115E+01
1 2 2 ° -4.1235E+01 | -1.6465E+00 | -2.7887E+02 | 1.1186E+01
b 1 2 3 0.0000E+00 | 0.0000E+00 ! 5.3624E+02 : 0.0000E+00
j 1 3 0 . 5.0970E+01 | 0.0000E+00 | -2.7518E+02 | 4.2245E+01
3 1 3 1, -1.1814E+02 | 0.0000E+00 = 2.7326E+03 | -1.1905E+00
" 1 3 2, 7.2459E+01 | 0.0000E+00 i -1.3206E+03 | -5.5917E+00
‘ 1 3 3 : 0.0000E+00 | 0.0000E+00 ; -1.3142E+03 | 0.0000E+00
- 2 0 0 ' 1.1656E+00 | -3.4406E+00 ' 2.2052E+02 | 0.0000E+00
; 2 0 1 -1.8971E+01 i 2.4326E+00 ' -4.0462E+02 | 0.0000E+00
K 2 0 2, 1.5030E+01 | -7.8577E-01 | -7.2028E+02 | 0.0000E+00
B 2 0 3 0.0000E+00 | 0.0000E+00 | 1.0938E+03 | 0.0000E+00
b 2 1 0 2.2888E+0l | 1.5467E+0l | -6.3733E+02 | 0.0000E+00
’ 2 1 1! 6.9402E+01 | -1.0844E+01 | 1.3699E+03 | 0.0000E+00
2 1 2. -8.2563E+01 | 3.4696E+00 ' 1.2412E+03 | 0.0000E+00
2 1 3 0.0000E+00 | 0.0000E+00 | -2.7180E+03 | 0.0000E+00
2 2 0 -9.0318E-02 | -6.2833E+00 | 1.8033E+03 ! 0.0000E+00
. 2 2 1, -2.4824E+02 | -6.1725E+00 | 9.3307E+02 | 0.0000E+00
. 2 2 2! 2.4491E+02 | 4.4776E-01 ! 6.8139E+03 | 0.0000E+00
‘ 2 2 3 ' 0.0000E+00 | 0.0000E+00 | -9.8197E+03 | 0.0000E+00
. 2 3 0/ -1.3510E+02 | 0.0000E+00 | 4.0440E+03 | 0.0000E+00
2 3 1 4.9533E+02 | 0.0000E+00 | -1.6234E+04 | ©.000OE+00
N 2 3 2 3.7369E+02 | 0.0000E+00 = -2.3441E+04 ' 0.0000E+00
b 2 3 3. 0.0000E+00 | 0.0000E+00 | 3.7646E+04 | ©0.0000E+00
K 3 0 0| 0.0000E+00 | 0.0000E+00 : -2.2984E+02 [ 0.0000E+00
E 3 0 1| 0.0000E+00 | 0.0000E+00 ' -4.3422E+02 | 0.0000E+00
. 3 0 2 0.0000E+00 | 0.0000E+00 | 2.6958E+03 | 0.0000E+00
N 3 0 3 0.0000E+00 | 0.0000E+00 | -2.8198E+03 | 0.0000E+00
3 1 0, 0.0000E+00 | 0.0000E+00 | -8.0843E+02 | 0.0000E+00
: 3 1 11 0.0000E+00 | 0.0000E+00 ; 2.6784E+03 | 0.0000E+00
2 3 1 2 0.0000E+00 | 0.0000E+00 f 4.2135E+03 | 0.0000E+00
" 3 1 3+ 0.0000E+00! 0.0000E+00 : -2.3381E+03 | 0.0000E+00
: 3 2 0. O0.0000E+00 | 0.0000E+00 ' 9.791SE+03 | 0.0000E+00
" 3 2 1 0.0000E+00 | 0.0000E+00 . -4.0365E+04 | 0.0000E+00
! 3 2 2 : 0.0000E+00 | 0.0000E+00 | -2.8534E+04 | 0.0000E+00
‘; 3 2 3 0.0000E+00 | 0.0000E+00 . 5.6549E+04 | 0.0000E+00
‘ 3 3 0 0.0000E+00 ' 0.0000E+00 -2.4737E+04 | 0.0000E+00
' 3 3 1 0.0000E+00 - 0.0000E+00 { 6.3754E+04 | 0.0000E+00
. 3 3 2 0.0000E+00 - 0.0000E+00 | 1.1662E+05: 0.0000E+00
3 3 3 3 0.0000E+00  0.0000E+00 ' -1.5932E+05 ° 0.0000E+00
1d
[
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Table 8 Coefficients of polynomials (26a.l) to (26b.2)
for Problem (3) ( X33s, Y33s =0 )
o q s MERD (3.2 HERY ¢(3:2)
Pgs Pqs Pqs pPgs
1 0 0 .6011E-03 8.0875E-01; -1.5119E+00 .0891E+01
1 0 1 1.0581E-01 | -1.3423E+00{ -1.3759E+01 . 7244E4+01
1 0 2 1.5066E-01 0.0000E+0Q0 9.1954E+0Q0 .4304E+01
1 0 3 0.0000E+00 | 0.0000E+00 0.0000E+00 .9456E+00
1 1 0 3.5730E+00 | -2.0032E+00 | -4.9449E+01 .1683E+01
1 11 3.8074E+00 | 4.6367E+00 1.5889E+02 .5217E+00
1 1 2 1.2534E-01 0.0000E+00 | -8.1243E+01 | 5.4158E+00
1 1 3, 0.0000E+00 0.0000E+00 ¢ 0.0000E+00 ' -2.1868E+00
1 2 0 | 2.0181E+01 5.6744E+00 , 2.4158E+02 0.0000E+00
1 2 1 | -2.9163E+01 | -6.9607E+00 | -4.7704E+02 § 0.0000E+00
1 2 2} 6.0356E+00 0.0000E+00; 1.6456E+02 A 0.0000E+09
1 2 3 . 0.0000E+00 { 0.0000E+00 | 0.0000E+00 : 0.00Q0E+00
1 3 0 ' -2.5633E+01 0.0000E+00 | -2.5499E+02 ' 0.0000E+00
1 3 1 4.5789E+01 0.0000E+00 3.6793E+02 0.0000E+00
1 3 2 ! -1.4734E+401 0.0000E+00 | -4.5176E+01 : 0.0000E+00
1 3 3 | 0.0000E+00 0.0000E+00 { 0.0000E+00 | 0.0000E+00
2 0 0 ! -3,3853E-01 | -1.0764E+01 | 1.5635E+01 ©-5.6818E+01
2 01 5.3594E+00 2.0515E+01 . 5.6553E+01 © 1.4930E+02
2 0 2 5.2904E+00 | ©.0000. +t00 | -3.7740E+01 . -9.7176E+01
2 0 3 0.0000E+00 0.000JE+00 | 0.0000E+00 1.9697E+01
2 1 0 8.8234E+00 | -1,.5910E+01 { -1.9539E+02 5.8317E+01
2 1 1 4.0061E+01 | -3.5513E+01 | 2.7947E+01 -2.2321E+02
2 1 2 3.7302E+01 0.0000E+00 : -5.3576E+01 = 1.6611E+02
2 1 3 0.0000E+00 | 0.0000E+00: O0.0000E+00 i -3.4682E+01
2 2 0 7.1578E+01 | -6.9348E+00 | 7.3457E+02 0.0000E+00
2 2 1 1.4890E+02 4.9963E+01 : -1.6397E+03  0.0000E+00
2 2 2 8.0834E+01 0.0000E+00 1.4676E+03 0.0000E+00
2 2 3 0.0000E+00 0.0000E+00i 0.0000E+00 0.0000E+00
2 3 0 9.9964E+01 0.0000E+00 : -9.6305E+02 i 0.0000E+00
2 31 2.0570E+02 0.0000E+00! 3.0293E+03 @ 0.0000E+00
2 3 2 9.3005E+01 0.0000E+00 ; -2.5766E+03 i 0.0000E+00
2 3 3 0.0000E+00 | 0.0000E+00 | 0.0000E+00 ' 0.0000E+00
3 00 0.0000E+00 5.2036E+01 { 0.0000E+00 : 0.0000E+00
3 01 0.0000E+00 | -8.4383E+01 ! 0.0000E+00 ' 0.0000E+00
3 0 2 0.0000E+00 | 0.0000E+00 i 0.0000E+00 § 0.0000E+00
3 0 3 0.0000E+00 0.0000E+00 ; 0.0000E+00 0.0000E+00
31 0 0.0000E+00 5.4394E+01 | 0.0000E+00 0.0000E+00
311 0.0000E+00 | 1.4518E+02 ; 0.0000E+00 0.0000E+00
31 2 0.0000E+00 } 0.0000E+00 ; 0.0000E+00 0.0000E+00
3 1 3 0.0000E+00 |, 0.0000E+00 ' 0.0000E+00 0.0000E+00
3 2 0 0.0000E+00 | -1.1444E+0Q2 0.0000E+0Q0 0.0000E+00
3 21 0.0000E+00 ‘-8.3128E+01 0.0000E+00 0.0000E+00
3 2 2 0.0000E+00 * 0.0000E+00 . 0.0000E+00 0.0000E+00
3 2 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
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Q Table 9 Coefficients of polynomials (26a.l) to (26b.2)
P
%y for Problem (4) ( X23S, X3qs' Y23s’ Y3qs =0)
2o
Vigy
"‘{\
o
o b q s x4 x4 2) ¢4 1 v(42)
e pgs Pgqs Pqs pgs
1 0 0| -3.2587E-01| 1.2001E-02 | -6.6054E+00 | -4.7946E+00
R 1 01 3.7426E-01| 3.8127E-02 | -2.6497E-01 | -1.9074E+00
¥X 1 0 2! 3.6561E-02! 4.8180E-02| 0.0000E+00 . 0.0000E+00
A 1 0 3| O0.0000E+00| 0.0000E+00 | O.0000E+00 | 0.0000E+00
Lol 1 1 0! 8.0086E-O1| -6.7988E-01| 2.5899E+01 | 2.3497E+01
Y 1 1 1 -1.9838E+00| -6.4505E-01 | -1.3825E+00 | -7.0045E-01
- 1 1 2 1.1054E-01| 1.6759E-01| 0.0000E+00 | 0.0000E+00
~ 1 1 3! O0.0000E+00| 0.0000E+00 | 0.0000E+00 | 0.0000E+00
R 1 2 0 5.8229E-01| 8.1387E-O1 | -2.2990E+01 | -2.7635E+01
i 1 2 1 1.2307E+00 | 2.5439E+00 | -4.4066E+00 | 4.2335E+00
533 1 2 2 2.7677E-01 | -1.0634E+00 | 0.0000E+00 | 0.0000E+00
Ky 1 2 3 0.0000E+00 | O OOOOE+00 | 0.0000E+00 | 0.0000E+00
1 3 0 0.0000E+00 { 0.0000E+00 | 0.0000E+00 | 0.0000E+00
R 1 3 1 0.0000E+00 | 0.0000E+00 | 0.0000E+00 ; 0.0000E+00
BN 1 3 2 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
3:; 1 3 3 0.0000E+00 ! 0.0000E+00 | 0.0000E+00 | 0.0000E+00
i 2 0 0 1.4991E+00 | -1.4935E+00 | 2.5284E+01 | 1.8234E+01
il 2 01 1.0240E+00 | 3.0513E+00 | -2.2889E+00 | 1.6523E+00
) 2 0 2 | -2.7217E+00 | -1.8975E+00 | 0.0000E+00 i 0.0000E+00
0y 2 0 3| O0.0000E+00 | O0.0000E+00 | 0.0000E+00 ;| 0.0000E+00
e 2 1 0 . -1.2694E+01 ' 6.5026E+00 | -1.3826E+02 ' -1.0653E+02
Py 2 1 1, 9.0147E+00, -6.9495E+00 | 2.7114E+01 ; 1.4958E+01
X 2 1 2| 7.1809E+00 | &.6407E+00 | 0.0000E+00 ; 0.0000E+00
iy 2 1 3 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
2 2 0 5.1746E+00 | -9.5870E+00 | 1.4436E+02 | 1.3627E+02
2 2 1 -1.9962E+00% 9.1101E-01 | -1.1742E+01 | -3.5588E+01
2 2 2 | -1.3561lE+01 ; -2,9050E+00 , 0.0000E+00 @ 0.0000E+00
2 2 3 0.0000E+00 ! 0.0000E+00 ; 0.0000E+00 O
{

.0000E+00
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Coefficients of polynomials (26a.l) to (26b.2)

.
P
.

1

................

for Problem (5) ( X3qs, Y3qs =0 )
— x5 D x(5:2) MERY ¢(5:2)
j pPgs pPas pds pPqs
1 0 0. 1.7531E-01 3.0014E-01 3.0181E+01 | -6.5174E+00
1 0 1: -1.1768E-01 -6.4930E-01| -6.3848E+01 2.8785E+00
1 0 2 -4,6124E-02 5.5971E-01| 2.6805E+01| -2.3563E+00
1 0 3 0.0000E+00 -1.1408E-01: 0.0000E+00 0.0000E+00
1 1 0 -2.5995E+00 2.8194E+00 | -2.4054E+02 | -7.4074E+00
1 1 1 7.0347E+00 -4.2148E+00 5.4821E+02 4.1677E+01
1 1 2 -4.3277E+00 8.1776E-01 | -2.8360E+02 | -1.4110E+01
1 1 3., 0.0000E+00 7.8482E-02 0.0000E+00 0.0000E+00
1 2 0, 0.0000E+00 -2.9033E+00 3.9446E+02 5.5070E+01
1 21 ; 0.0000E+00 © 3.0314E+00 | -9.3436E+02 | -1.2007E+02
1 2 2 0.0000E+00; 2.2003E+00 5.1613E+02 4.5461E+01
1 2 3. 0.0000E+00 -1.2209E+00 0.0000E+00 0.0000E+00
1 3 0. 0.0000E+00 0.0000E+OO' 0.0000E+00 0.0000E+00
1 3 1 ' 0.0000E+00 | 0.0000E+001 0.0000E+00 0.0000E+00
1 3 2 l 0.0000E+00| 0.0000E+00 i 0.0000E+00 0.0000E+00
1 3 3 0.0000E+00 | 0.0000E+00 | 0.0000E+00 0.0000E+00
2 0O ‘ 2.5910E+00 | -6.2&18E-01! -6.2190E+01 8.3148E+01
2 01 : -8.5914F+00 | -8,1785E-01, 2.1830E+01 | -1.1222E+02
2 0 2 ' 5.7373E+400 1.4816E+00 | 6.2948E+01 4 .4637E+01
2 0 3 j 0.0000E+00 | -8.66395-015 0.0000E+00i 0.0000E+00
2 1 0 8.9134E+00 i -3.3216E+00 ! 8.4793E+02 -3.2857E+02
2 11 -1.6126E+01 ~ 8.0049E+00 . -1.4123E+03 ;| 4.1580E+02
2 1 2 6.9518E+00 ; -2.5632E+00 4.5535E+02 ; -1.6118E+02
2 1 3 0.0000E+00 | 1.4334E+00 O.OOOOE+OOi 0.0000E+00
2 2 0. 0.0000E+00 1.7599E+01 | -1.6084E+03 ' 1.1821E+02
2 2 1 0.0000E+00 | -2.9872E+01 3.1919E+03% -5.7679E+01
2 2 2 : 0.0000E+00! 7.1522E+00 ' -1.4621E+03: 1.7903E+01
2 2 3 0.0000E+00 | -1.5332E+00 0.0000E+00 ; 0.000QE+Q0
2 30 0.0000E+00 i 0.0000E+00 0.0000E+00 | 0.0000E+00
2 31 0.0000E+00 : 0.0000E+00 = 0.0000E+00 ; 0.0000E+00
2 3 2 0.0000E+00 0.0000E+00 0.0000E+00\ 0.0000E+00
2 3 3 0.0000E+00 0.0000E+00 0.0000E+OO! 0.0000E+00
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k 031  Problem (1),b/c =2

— Analysis
: (1,1)
5 ———— Eqn. (260.1) with Xpas in Table ©

0.2

‘s
W O 1 —
9"' .
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Problem (2), b/c=2

0.3~ ——— Analysis
@,1)
~—~— Eqn.(26a.1) with Xpgs in Table 7
0.2
o
01+
0

- 59 - Figure 6




s Problem (3), b/c =1

o — Analysis
(3,1)
o ———— Eqn. (26b.1) with Ypgs in Table 8
(3,2)
------ =~ Eqn. (26b.2) with Ypgs in Table 8

(3,Y)

Uy - 60 - . Figure 7
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Problem (4), b/c =1
e ——— Analysis

a1 0 Eqns. (26a.1) and (26a.2) with Table 9
I 0.2

0.1+

F0(4,x)

-

: - 61 - Figure 8-1
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Problem (4), b/c=1

Analysis
(4,1)
———— Eqn. (26b.1) with Ypgs in Table 9
42} .
______ Eqn. (26b.2) with Ypgs in Table 9

- 62 - Figure 8-2
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e B Problem (5), b/c=2

X — Analysis
(5,1),
eV ———— Eqgn. (26a.1) with Xpgs in Table 10
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N 63 Figure 9-1
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Problem (5), b/c=2

— Analysis
L 5d)
-——— Eqn.(26b.1) with Ypgs in Table 10
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CHAPTER ITI

ON MECHANICS OF CRACK GROWTH AND ITS EFFECTS ON

THE OVERALL RESPONSE OF BRITTLE PORQOUS SOLIDS

M. Isida* and S. Nemat-Nasser

Department of Applied Mechanics and Engineering Sciences

University of California, San Diego, La Jolla, CA 92093

Abstract

This paper is concerned with crack growth in brittle porous solids
under compression and its effects on the overall response of the material.
As a mathematical model, we consider an elastic solid containing a zig-zag
array of circular holes with a pair of edge cracks (two-dimensional
problem), and solve this problem by using a theory which gives numerical
results as accurate as desired. Based on the analytical results, we discuss
the crack growth process and estimate the effective Young's moduli as well
as the stress-strain relation for porous solids. Our computations show that
the cracks emanating from the poles of the circular holes extend in the
axial direction and grow -- In most cases in a stable manner, but for
certain cases in an unstable manner during an intermediate loading state --

as the overall applied uniaxial compression increases, reaching a certain

* Present address: Department of Mechanical Engineering, Kurume Institute
of Technology, 2228 Mukuno Kamitsumachi, Kurume 830, Japan.
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limiting maximum length. This maximum crack length strongly depends on the
ratio of the hole radius to the hole spacing in the loading direction. The
effective Young's modulus in the direction of the crack growth is basically
determined by the initial porosity, and is little affected by the crack
length or its growth regime, i.e., whether stable or unstable. We find that
the overall axial stress-strain curve remains monotonic, exhibiting no peak
stress or strain softening, as cracks extend in the axial direction and

reach their limiting length with increasing axial stress.
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§§§: 1. INTRODUCTION

‘:‘ For a large class of brittle materials, failure often involves the
é&; formation and growth of tension cracks. Under farfield overall tensile
;&2% forces, such tension cracks initiate at preexisting flaws or defects, or at
e ‘ inclusions or other material heterogeneities which serve as stress
:;g concentrators. Tensile failure of this kind has been extensively studied
§§§ since the pioneering work of Griffith {1]). It is also known that failure of
iy brittle materials under farfield compressive forces is often caused by the
%ﬁ formation and growth of tensile microcracks at preexisting flaws or other
; v

%%; heterogeneities. In this case, even though the overall farfield stresses may
i?a be compressive, the presence of defects may produce high tensile stresses at
;fﬁ the local level, leading to the formation of tension cracks. Brittle
?:z failure of this kind is rather complex and has received attention of
gﬁﬁ researchers only recently.

fﬁf Various mathematical models have been considered in order to explain
§§§ and analytically quantify brittle failure in compression. A noteworthy
§¥| model is a straight preexisting crack inclined with respect to the maximum
:ﬁ; overall farfield compression, producing tension cracks at its tips due to
%f‘ the relative frictional sliding of its faces; see [2-11]. Recently, Nemat-
mﬂ Nasser and Horii (8,9], and Horil and Nemat-Nasser [10,11], have analyzed
;ﬂ' the elasticity problem associated with this model by considering a
%?2 preexisting thin straight flaw (or a set of such flaws) endowed with both
id‘ frictional and cohesive resistance, and embedded in a linearly elastic
::; solid. By examining the growth of tension cracks which emanate from the
?@g tips of such a flaw, as well as from the tips of an interacting set of such
:53 flaws which are suitably arranged, these authors show that the model does
?:‘ . capture the essential features observed experimentally, i.e., axial

;"‘ - 69 -
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splitting “in wuniaxial compression, and faulting when the axial compression
is accompanied by some moderate confining pressures. In addition, by
including the possibility of the formation of a plastic zone at the crack
tips, Horii and Nemat-Nasser [9-11] show how the model can be wused to
explain the process of brittle-ductile transition. These authors also
report on a set of model experiments which seem to corroborate their
analytical predictions.

Microcracks may also nucleate at pores in a porous solid and grow under
farfield compressive stresses. This suggests an alternative model for the
analysis of failure in compression of brittle solids containing micre-
cavities. To be able to examine the physical consequences of a model of
this kind, one requires a solution of the problem of crack growth from the
walls of cavities wunder prescribed farfield stresses. In the two-
dimensional case, the elasticity problem of cracks extending from the edges
of a circular hole has been solved by Bowie [12] for an infinitely extended
medium. The more general problem of cracks emanating from an elliptical
hole in a plane has been treated by several authors [13-16] where some of
the results have been put in a form convenient for design purposes [17,18].

Recently, Sammis and Ashby [19] proposed to use edge-cracks emanating
from circular (in two dimensions) or spherical (in three dimensions)
cavities, as a basic model for the analysis of brittle failure in
compression. With the aid of model experiments, these authors show that
cracks can grow from pores and extend in the direction of maximum
compression. However, since an exact solution for a finite body containing
a circular cavity with edge-cracks does not exist, these authors wuse
approximate estimates based on the beam theory. In particular, for a solid

containing periodically distributed holes with edge-cracks, Sammis and Ashby




estimate the relation between the overall uniform axial stress and the axial
strain, arriving at a stress-strain relation with a peak stress followed by
a descending portion (i.e., "strain softening"). In this model, the cracks
are assumed to initiate at the poles of the circular holes and to extend
straight in the direction of axial compression. Since approximate
expressions* based on strength-of-material considerations are wused, it 1is
not clear whether an exact solution of the associated elasticity problem
would also produce a peak stress followed by "strain softening”.

In this paper we solve the problem of a zig-zag array of circular holes
with a pair of edge cracks. In the method used the results can be rendered
as accurate as desired. Based on our numerical results, we discuss the
crack growth process, the effective Young’s moduli, and the stress-strain
relation of porous solids. Our solution predicts a monotonically increasing
axial stress-strain relation for this model problem even when the cracks

grow axially in an unstable manner.

2. THEORETICAL ANALYSIS OF ZIG-ZAG ARRAY OF HOLES WITH EDGE CRACKS

As a mathematical model of porous solids with micro-cracks, we consider
an infinite solid with a 2ig-zag periodic array of holes with edge cracks,
as shown by Fig. 1. Due to symmetry, we solve this problem using suitably

symmetric stress potentials defined on the rectangular region OEFGO; see

* In [19], the change in potential energy due to cracking is calculated for
small crack lengths (i.e., 1 + L=1 is used in equation (22) of [19]).

The results are then used to calculate the elastic modulus of the cracked
body for large crack lengths. This may be a major cause of the strain

softening prediction in [19].




Fig. 2 for notation and definition of various geometric quantities. Figs.
¢ 3-1 and 3-2 show the two typical hole distributions corresponding to
b/c=0.577 and b/c =1, which are the equilateral triangular array and the
square array, respectively.

We consider the biaxial loading case in which

oy = -Xlao, o, = -Azao (1)

PN U]

where 2 and o, are the applied stresses at infinity in the x- and y-
directions, respectively, and % is a positive reference stress.

The analytical procedure for the solution of this problem is outlined
in Appendix 1. Here we discuss the numerical results,

The numerical values of the stress intensity factor KI are given in

terms of the following dimensionless quantity, F._:

i I
F.(A,,2,) = M (2)
IY7'1°72 o (na);’
0
: Let Ex (in compression) and Ey (in tension) be the effective Young's

moduli in the x- and y-directions for the porous solid with cracks. They
are obtained from the displacements, u along EF and v along FG, associated
0 with cases Al - 1, A2 = 0 and Al = 0, A2 = -1, respectively. Their

. numerical results are given in terms of the "modulus-reduction-factors", C

and Cy‘ which are defined by:

Ex EX
X EO y EO
where ‘
E
f Eo - E (plane stress), EO - 1.2 (plane strain) (3b)

Note that Ey for compression is not the same as that for tension, once

cracks in the x-direction are developed. In this case, Ey {(compression) =

PN S
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Ey (uncracked porous) > Ey (tension with cracks).
Cx and Cy depend on Poisson’s ratio. (Numerical results presented by

Fig. 8-1 to Fig. 13 have been obtained for plane strain with v»=0.3.)

. 3. CRACK GROWTH PROCESS IN BRITTLE POROUS SOLIDS UNDER COMPRESSION

3.1. Uniaxial Compression ('\1-1' ,\2-0)

The solid curves in Figs. 4-1 to 4-3 give the dimensionless stress

v T

intensity factors FI(I,O) for various values of b/c in the case of uniaxial
compression. In the range b/c=<1, which includes the two typical cases

o shown by Figs. 3-1 and 3-2, the value of FI(l,O) decreases monotonically
.‘ with increasing values of L, i.e. an increase in the applied stress is
required in order to extend the crack (at constant critical stress intensity
E factor). Thus the crack extension regime is stable in this range of b/c.
| FI reduces to zero at a certain value of L, depending on the values of b/c

and c/a. This trend becomes more pronounced as b/c increases.

For larger values of b/c, unstable crack growth may occur, as shown by

P «
- -

Fig. 4-3, We observe that, for certain values of c/a, F_. which is first a

I
decreasing function of L, may begin to increase with increasing crack
length, L, after a certain crack length is attained. However, since the
: ascending portion of the FI' L-curves are followed by a descending portion,
the corresponding unstable crack growth is expected to cease and be followed

r by a stable one.

K Since KI is constant (-KIC) during the crack growth, we can define

- the normalized applled stress by the reciprocal of FI' that is

)

4

o -01(ra)"

B 5= ()
¢, Kie

o, L-curves for b/c=0.577 and b/c=1/0.8 are given in Figs. 5-1 and
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ﬂﬁ 5-2, respectively. In the range b/c=<1, o increases monotonically with
'y
¥,
Yz increasing L, as shown in Fig. 5-1 for a typical case. Therefore the crack
s growth is stable in this range of b/c. For larger values of b/c, we
g
§:~ observe an intermediate stage where ¢ decreases with increasing L, as shown
W
'
3( by Fig. 5-2. The crack growth behavior in this case depends on the test
t%ﬁ conditions. If the specimen is tested under a displacement-controlled
4
A -
:.i machine, the o, L-relations will be as shown in Fig. 5-2, consisting of an
,
] initial increasing stage, an intermediate decreasing stage, and a final
o increasing stage. In load-controlled tests, however, the crack will extend
e}
Y -
:g; from L = L1 to L = L2 abruptly, and then o increases with increasing value
$, of L, following the curve shown in Fig. 5-2. Therefore in this case, the
Q crack growth is temporarily unstable.
B,
,}é As is seen in Figs 5-1 and 5-2, the c¢rack growth, except for the
¥
hg unstable stage in Fig. 5-2, becomes more gradual as L increases, and L
;ﬂ approaches a certain limiting value Lmax when o tends to infinity. The
4
the
%a value of Lmax can be determined graphically from diagrams similar to Figs.
Q‘Q‘Q
hﬂ‘ 4-1 to 4-3, by finding the intersection of the FI-curves with the L-axis.
J
:* The variation of Lmax with b/c and c/a is displayed in Figs. 6-1 and
A
a?‘ 6-2, respectively. They show that Lmax varies almost linearly with both b/c
(W)
oY
34: and c/a, and, hence, can be fitted by the linear relation
PR,
W [+ b [+
*; Lpax - -1.025-+0.003; + E( -0.061-+0.981;) (5a)
| d
??; Results from Eqn. (5a) are shown by dashed lines in Figs. 6-1 and 6-2.
Qp Eqn.(5a) may also be expressed as
o
f."l
uh 1 0.003S + 2(0.981-0.0612 sb
.':’: Imax- - .025+ . 3a+a( . 1' . C) ( )
ne
£
Ry - 74 -
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which shows that Lp,, is also linear in b/a for fixed values of c/a. In
Fig. 6-3 we have plotted the numerical values of Lp,x for various c/a,
taking b/a as the abscissa. It is seen that Lp,x is almost independent of

c/a, and can be approximated by the following linear expression of b/a:

Lpax = 0.97 (‘;’ -1) (5¢)

Eqn. (5¢) is sufficiently accurate, at least for the range of b/a and c/a
shown in Figs. 6-1 and 6-2.

The above b/a - dependence of Ly,, in a limited range of b/c can be
understood from the behavior of the stress flow around the crack tips, which
is mainly affected by the relative horizontal hole spacing, b/a, and is

little disturbed by the relative vertical spacing c/a.

3.2. Effect of Lateral Confining Pressure

The lateral confining pressure considerably reduces KI and, hence,
Lmax' As an example, FI and Lmax for a one percent lateral compression are
given by dashed curves in Figs. 4-1 to 4-3. In order to examine the effect
of the 1lateral pressure on Lmax’ calculations are performed for various
values of ) (-02/01) in the typical case of b/c=0.577, and Lmax is
evaluated. The results are plotted against X in Fig. 7, together with the
curve for an infinite solid (¢/a-+«) obtained as a limiting case of the
present problem. Lmax reduces to zero at a certain value of A depending on
c/a. These limiting values of A for finite c/a are known as the ratio of
the minimum and the maximum of the circumferential stress along the holes

without cracks which are zig-zagly distributed [20]. The calculated curves

in Fig. 7 are extended toward these limiting values by dashed lines.
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QJ; 4., MODULUS CHANGE AND STRESS-STRAIN RELATION

f%; 4.1. Compression in the Crack Growth Direction

é&' Figs. 8-1 to 8-3 show the change in the elastic moduli due to crack ‘
:: extension for b/c= 0.577, 1 and 1/0.8, respectively. Values of the (
:5' modulus reduction factor Cx are plotted by solid lines against the t
EF‘ normalized crack 1length, L, for various values of the hole size parameter %
A |

c/a. We find that Cx decreases for smaller values of L, and tends to be

almost constant for larger values of L. Note that these curves are

:f terminated at points where the corresponding limiting maximum crack length,

2 L, is attained.
max
Wy Since Cx depends on b/c and c/a in Figs. 8-1 to 8-3, it is of interest
ﬁf‘ to check the relation between Cx and the porosity fH=-na2/(2bc). In Fig.
; . 9, we have plotted Cx against fH for various values of b/c, where L is taken
o
W to be 1.5 for convenience. We find that Cx is not much affected by b/c.
:‘ Thus we can conclude that, for all practical purposes, the modulus reduction

3 factor Cx depends only on fH, and is almost independent of b/c and L, unless
o .
W b/c is extremely small. '
J |
g@ The limiting values of Cx when L+ 0 are obtained by analysing a =zig-
.
:rg zag array of holes without cracks [20]. Typical results are plotted in Fig.
e
s 10, and we find that (C.);._o also strongly depends on f, and is little
f;! affected by b/c. These analytical values are fitted by the following
L) »
ff' polynomial with good accuracy:
i
o, -] - 2 3

(Cx)L-O 1 2.592fH + 3.050fH 3.354fH
,\‘
B + 20 0.828fF, + 1.586£2 + 7.664 £3 |
k24 c : nth Ht ' H
o 2
! + b [ 0.310f, + 0.836f2 - 11.680 f3 |
c ) H ’ H ' H

Q'l
gl
o
5
»:‘:"
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(0.25<b/c<1.33 and EHSO.S) (6)

2
%
’

Let’s make further comments on Cx for the two typical cases shown by

-
-

o

Figs. 3-1 and 3-2. As is seen 1in Figs. 8-1 to 8-3, Cx remains almost
constant after the crack length reaches a certain value which seems to be

around 1.5. Fig. 11 shows the values of Cx for L=0 and for L>1.5.

a These are the upper and the lower bounds for Cx’ The values for L=0 are
ty
a well fitted by the following polynomials:
:.ﬂ
- - 2
(Cx)b/c-0.577,L-0 1 -2.977 fH + 4.910 fH (7a)
N
3 -1 - 2
z (Cx)b/c-l,L—O 1 -2.972 fH + 2.536 fH (7b)
‘
- In the special case of b/c=1, (CX)L-O can be also obtained by
4
K+ transformation of the results for a doubly periodic array of circular holes
éi distributed with equal spacings in both directions [21] (see Appendix 2).
" Now we consider the stress-strain relations for this problem. Let o
; and ¢ be the axial compressive stress and strain, respectively. Then the
"
N strain when the crack length is L is given by the integral
Kr
L
. do (8)
f’ 29 I Ex
by L=-0
} It is oberved from Figs. 8-1 to 8-3, that Ex remains nearly constant
o during the crack growth, in a wide range of values of b/c. In these cases
.
o we have
b
L]
D o
: L
€L " F (M
; X
"
:: which is written in the dimensionless form
Y
o E
~ L X
. ‘LTc T E (10)
. X 0
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= biad ad b o Kl e e B i e it
3
»
A where
%
- Bo(rad®e;  _ op(ra)t (11
¢ £ - fe ] - -
. L Kie L Kie FI,L
: It is to be emphasized that the linear relationship (10) holds
approximately even for cases where the crack growth is temporarily unstable,
i as is seen in Figs. 5-2 and 8-3 for b/c=1/0.8. Fig. 12 gives the
K-
2 - ~
? o, , £, -relations for this case of b/c.
¢ L' L
As stated above, our results do not show any significant reduction in
the axial stiffness of the porous solid with axial crack growth, unless b/c
1 is extremely small. Our numerical results produce monotonically increasing
)
. axial stress-strain relations without any peak stress, even when axial
5 cracks grow in an unstable manner in the axial direction. The effect of
such an axial crack growth on the axial strain and axial stiffness is of
4
second order which does not change the character of the corresponding
>
it stress-strain relation.
:
AL 4.2. Young's Modulus Transverse to Crack Growth Direction
.
N The modulus reduction factor Cy, for tensile loading, is given by
-
K dashed curves in Figs. 8-1 to 8-3. As is expected, Cy decreases
\
considerably with crack growth, and the tensile load-carrying capacity of
. the specimen reduces to zero when the adjacent cracks join. Thus Cy is zero
Ld
g
; when a+££-+b or L-(b/c)(c/a)-1. The curves obtained by numerical
'y
calculation may therefore be extended to their corresponding limiting values
L)
A on the L-axis, as shown by dotted lines.
. An abrupt drop in the value of Cy is observed in Figs. 8-1 to 8-3.
[}
- Fig. 13 gives the relation between Cy and fH for L=1.5. Cy is not
o
B - 78 -
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much affected by the variation in b/c, similarly to Cx' However, it should
be noted that, unlike Cx’ Cy suffers a considerable reduction with
increasing L. Therefore, Fig. 13 should be regarded as an example for

L=1.5. Cy, for tensile loading, depends very strongly on L, as well as on

fH'
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APPENDIX 1 : ANALYSIS OF ZIG-ZAG ARRAY OF HOLES WITH EDGE CRACKS

' Analytical Concept

Consider an infinite solid with a zig-zag periodic array of holes with
edge cracks as shown by Fig. 1. Due to double symmetry, we solve this
/ problem using stress potentials defined on the unit rectangular region 1in
the first quadrant, OEFGO; see Fig.2.

The analysis is performed by superposing two stress states. The first
'

3 one 1is represented by the complex potentials ¢1(z) and ¢1(z) having
singularities within the hole. The second stress state is properly singular
at the crack tips, and is realized by distributing suitable force doublets
along the cracks.

The above two stress states are established in such a manner that they
automatically satisfy the traction-free conditions at the hole.

The boundary conditions on the crack and at the outer edges of the unit

region are given 1in terms of stresses and displacements. In the present

. X R R R WL

analysis, the stress conditions are replaced by those of the resultant

forces in order to increase the accuracy of the numerical results [22,23].

) Displacements and Resultant Forces due to the First Stress State

In plane problems of elasticity, components of the stress, the
: displacement, and the resultant force with respect to the Cartesian

coordinates are expressed in terms of two complex potentials, ¢(z) and ¥(z),

B g +o0
! Y X

: as follows [24]: !
| 7 - 2Re[¢'(2)] I

(Al.1)
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. i. ‘.

g -0

_y__z_x + 11'xy =~ Z¢"(z) +¢' (z)

2G(u-1iv) = k¢(Z) - Z¢' (2) - ¥(2) (Al.2)
Py+ ip = - $(2) - 24’ (2) - ¥(z) (Al.3)

where G is the shear modulus, and k is defined in terms of Poisson’s ratio,

v, as follows:

1-#: (plane stress), = 3 - 4 (plane strain) (Al.4)

n-
The complex potentials ¢1(z) and ¢1(z) for the first stress state are
expressed as the following Laurent series:

N-1 o _
$.(z) =Mz + = [M (22n+1_(2n+1)ahnz (2n 1)y g a4n+2, (2n+1)]
1 0 n=0 2n

2n

.1 N-1 ]
¥(2) = M a2zl 4 3 (K, (22 (2ne1)a T, " (2043) (A1.5)
n=Q <N

) 2. 4n+2 - (2n+l)
M2n(2n) a z ]

Using Eqns.(Al.5) in Eqns.(Al.2) and (Al1.3), we have the following
expressions for the displacements and the resultant forces:

] N-1
26(u - 1v) () = M, (2a%2 L e-1yz)+ ) Mzn[n22n+l-(2n+1)izzn

+2nt))a* ez BV D L (9n1)7: 720 L (anyz S40H2, (204D

N-1 ) ]
+ 5 K [-22n+1-a4n+2(nz (2n+1)+(2n+l)iz (2n+2))
n=0 2n
+(2n41)a T4, (2043), (Al.6a)

-1 . N-1 _2n+l ~ 2n
+ - 2 - . - +
(P ip )(1) M0(2a z 2Z2)+ = M2 (-2 (2n+1)zz

+(2n1)a ™z D90 1y5,7 20 4 (any? 2072, (2041

N-1 . -
+ % K [_22n+1+abn+2{z (2n+1)~(2n+1)iz (2n+2))
n=0 2n
+(2n+1)a e, (2043) (Al.6b)
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The above expressions include 2N wunknown coefficients M2n and Kzn

(n=0,1,2,---,N-1) to be determined from the boundary conditions.

Displacements and Resultant Forces due to the Second Stress State

The second stress state is realized by distributing force doublets of
arbitrary densities on the cracks., The force doublets are established from
stress states for concentrated forces acting in an infinite solid which
contains a circular hole, and, therefore, the traction-free conditions at
the hole edge are satisfied automatically. Expressions for  the
displacements and the resultant forces due to these distributed force

doublets are as follows [25]:

2 2,2 .
1 1 K 11
26 Cu-1v) 3y = 2a Z J Pn () [ ey s ()’
m=1 -£/2 m m
1 x T TS ) 2

- + - -2 - W, - a- __*
SnY S (sm~w2)2 (sm-wz)2 (wl w2)(w1 w2) z2 (sm-w2)3

a? 1
+2(K.Z+z ) (s +w )2] (Al.7a)
m 3
2 2/2 -
. 1 1 1 11
(Py + lPx)(2) T 2n E: J. Pp(sy) [ ) sV " s -y + (sm-wl)2
m=1 -£/2 m
1 1 ¥ v, w1 ¥ _ a2 1
+ , + —= + - ) - 5 ~2(w,-w, ) (W, -w,) =5 3
SnVYo s, %o (sm w2) (sm w2) 1 72 1 272 (sm wz)
2
+2(-z+2 L

. ) W] (Al1.7b)




where pm(sm) (m=1,2) are unknown density functions of the force doublets,
and the subscript m takes 1 for the right and 2 for the left crack,

respectively; the following notation is also used (see Fig. Al-1):

(A1.8)

2 2
:‘:0,m - a + 2 (m=1) , xO,m --a-3 (m=2)
The density functions pm(sm) in Eqns.(Al.7) are then expressed as (26]
22 53
Palsy) = a (s DI (P -s21] (A1.9)
It is obvious from symmetry that
qy(-8,) = q;(s)) (A1.10)
Thus ql(sl) is the only unknown function in the second stress state.

Boundary Conditions Based on Resultant Forces and Displacements

A piecewise linear approximation will be used to evaluate the unknown
weighting function ql(sl). For the right crack, this is shown in Fig. Al-2,
where equally spaced intervals are used. Eqns. (Al.7a) and (Al.7b) now
reduce to linear expressions in fj (j = 1,2,---,M), which are the values of
the weighting function at the ends of these intervals.

We now have 2N unknown coefficients in the first stress state and M
unknown weights, fj’ in the second stress state to be determined from the
boundary conditions. Since both stress states satisfy the traction-free
conditions on the hole, we have only to consider the boundary conditions on

the crack and at the outer edges of the unit rectangular region. These

conditions are satisfied by means of a boundary collocation procedure based
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on the displacements and the resultant forces. In the numerical
computations, the traction-free conditions of the cracks are replaced by M
relations, and those of the outer edges by 2N relations.

Since the cracks are assumed to be traction-free, the present analysis
is valid for such combinations of 9 and 9 that satisfy this assumption.

In order to obtain M relations from the traction-free conditions on

crack A1B1 (stated in terms of resultant force, Py), we divide this crack

into M intervals, DIDZ' D2D3,'-- DMDM+1’ where D2, D3,---, DM are the mid-
points of the intervals shown in Fig. Al-2. Then the traction-free

conditions are:

D
Along crack AB. : (7] K+l 6 (k= 1,2,---,M) (A1.11)

Dy

The boundary conditions at the outer edges of the wunit rectangular

region are given by the following relations (A.12a) and (Al.12b):




L] —
:‘ Conditions for the side EF :

"
L3
- t., -0 for ;
, u = cons rxy (for any y) ;
3
i; Conditions for the side FG : (Al.12a)
0,‘
R (ay)x - (ay)b_x , (’xy)x - ('xy)b-x )
X x b x b]
:: [u]o [u]b-x , [v]0 - [v]b_x (for any x)
Wk
Mt
K Conditions for the total forces along the outer edges:
. F H G
Y [Px]E - [Px]G 91¢ [Py ]F azb (Al.12b)
)
"
X < K H .
¢ regarding the relation [Px]F - - [Px]G in Fig. 1.
;* To impose these boundary conditions in numerical computations, EF and
B
&) —
o FG are divided into Nl and N2 equal intervals, respectively, as shown in
s
s Fig. 2, where N2 is taken to be an even integer, say 2N3.
W The corresponding lengths of the intervals on EF and FG are
)
. c b
'5 h1 - 3N, h2 i (Al.13)
) 1 2
\.l
The boundary conditions (Al1.12) are then replaced by the following
.‘
:ﬁ relations (Al.l4a) and (Al.14b), in terms of the resultant forces and
st
ss displacements:
S S
Along EF : [ulg 1= 0, (B 1= 0 (k=1,2,---,8)
i y'S 1
4 k k
W s s S S
i —_ - -
2 Along FG : (P_] k+1 _ (P N4+1 k, (P ] k+1 - (P ] N4+1 k
y Sk y SN -k X Sk X SN K
: s s, 4 s s, .4
KY k+1 N, +1-k k+1 N, +1-k
',‘ [u]S - [u]S l‘ ’ [V]S - [V]S 4
e k N, -k k N, -k
ot 4 4
o
N3 - N2/2, Na -2N1 + N2+1 (k-N1+1,N1+2,---,N1+N3)
;1 (Al.1l4a)
L)
|
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For the total forces:

F H G
(B g - [Bylg = opc o [Bylp = oy (Al.14b)

In order to obtain the same number of simultaneous equations as there
are unknowns, the integer N in Eqn. (Al.6) is chosen such that

N = Nl + NZ (Al1.15)

The unknown quantities K2n’ MZn (n=0,1,2,---,N-1) and fj (j=1,2,--

-,M) are determined by solving the simultaneous equations (Al.11l) and

(Al.14).

Accuracy of Results

The stress intensity factor at the crack tip is calculated by

b
KI - fM %f (Al1.16)

The numerical results are then represented in terms of the dimensionless

stress intensity factors given by Eqn. (2).

The accuracy of the numerical results would be improved with increasing
subdivision numbers M, N1 and N2. It is however desirable to use minimum
values for these quantities which still provide needed accuracy.

Reasonable values of M have been determined from test calculations of
an infinite solid containing a circular hole with edge cracks, as a special
case of the present problem. Table Al-1 gives typical results of FI(l,O)
for R/a=0.4, As 1is seen, any M larger than 5 seems to give reliable
values with errors less than one percent. In computations of the present
problem, M is taken to be 7 to 10 depending on the geometric parameters.

Other serfies of test c¢:lculations have been done to determine

reasonable values for N1 and N2. Table Al-2 gives an example for b/c~=0.5,

L by Vi Ee Ls ¢ B U NS ORI TN XK
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c/a=5 and £/a=2, FI(l,O), Cx’ and Cy are given for various values of N1

and N2, whereas M is fixed to be 7. The convergence is excellent,
especially when Nl - N2, i.e. h1 - h2. On the basis of the above and
similar results for other configurations, N1 and N2 are chosen to be 5 to
10, holding the relation h1==h2.

Thus the number of unknowns to be determined from the boundary

conditions is confined to less than 50 with good accuracy.




APPENDIX 2 : STIFFNESS REDUCTION FACTORS FOR ZIG-ZAG ARRAY OF HOLES

The computer program prepared in a previous work {20] has been employed
to obtain the values of (Cx)L-O’ The numerical results are then fitted by
Eqn. (6) in terms of b/c and fH' Eqns. (7a) and (7b) are also proposed for
the two typical arrays of holes.

The values for the special case of b/c=1 can also be obtained by the
transformation of the results for the doubly periodic array of circular
holes distributed with equal spacings in both directions [21] (Fig. A2-1).
The procedure will be outlined below.

The stress-strain relations for this problem can be written as follows:

£ -

11 =~ P1111°11 * P11229%22

£ -

22 = D2211911 ¥ D2222922 (A2.1)

£ -

12 = P1212°12

o -

11~ %111%11 * C1122%22

g -

22 = C2211%11 * C2222%22 (A2.2)

(24 -

12 = €1212%12

where
Dy111 = P2222 0 D1122 = Poomr
Ci111 = %2222 C1122 ~ C2211 (a2.3)
and
o - “un
1111

2 - 2
C1111 ° C1122




Le and C, denote D, and Ci for the unperforated solid

€ Dyjr10 1jk10 ijkl jk1

under plane strain. They are given as follows:

1 Yo 1+v0
P11120 7 E, + Pu1220 T " E_ ' P12120 T E, (A2.5)
0 0 0
E, £,
im0 7 Tz %1220 T "0 %100 Cr2120 T Ty (A2.6)
E v
B 102 Y0~ 1-v (A2.7)

where E, v are Young's moduluds and Poisson’'s ratio of the material under

plane stress, and EO’ Yo denote their equivalent values under plane strain.

Values of C fl)’ 9 fZ) and C

1122711220 ¢~ 1212712120

(-f3) of this problem for v=0.3 were given by Nemat-Nasser et al. in a

11117%11110 ¢

. * *
previous paper [21], using the notation C2222/C2222, 02233/C2233 and #7#'

respectively.
Eqns. (A2.4) and (A2.6) enable us to calculate Dijkl from fl’ f2 and f3
by the relations
2
5 1 (1 vo)f1
2_f2
1111 EO f1 f2
-y 2
b .1 Nl (82.8)
2._f2 .
1122 EO f1 f2
5 1 1-+v0
1212 Eo f3
and the obtained values of EODijkl for v=0.3 are given in Table A2-1.

Now we rotate the coordinate axes by n/4, and denote all quantities in
the rotated system of coordinates by superimposed star. Then, the following

*
equations determine Dijkl from Di

jkl
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S P DI S VY I VY
P 1111 2222 2 !
" S F U LI S VY B VIV (42.10)
- 1122 2211 2 ’
t
\ D* D D
p 1212 © 1111 T 1122
- The modulus reduction factor Cx for a zig-zag array of holes 1is given
by l/EODIul. The obtained values are in close agreement with those from the
X direct analysis [20], as shown in Table A2-1.
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J Table Al-1.
Sl Variation of FI(l,O) with various M for

c/a + o, B/a = 0.4,

yl M FI(l,O)
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.214
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+ . Table Al-2.
J FI(l,O). Cx and Cx for b/c=0.5, c/a=5, £/a=2, M=7,
o where Neq(number of equations)—h1+2(N1+N2)

) (plane strain, v=0.3).

N
z
1]
el

FI(l,O) c c

=

2
iy

2z

21
23
25
29
1
33
37
39
41

.0343
.0346
.0338
.0345
.0345
.0345
.0345
.0345
.0345

.908
911
.891
.909
.909
.908
.909
.909
.908
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o Table A2-1. Comparison of Cx - Ex/EO for b/c = 1

from Refs. [20] and [21] (v=0.3).

‘él‘ N ' e

X | Doubly periodical holes Cx for Zig-zag holes

o 1

e u FoPrrnn ¢ " FoPrizz {FoPra1z | v Ref. [20]
oy 0°1111
.05 1156 477 1650 859
10 1297 510 944 1732
15 455 1538 1327 617
120 621 564 1823 515
25 1808 1583 501 423
.30 018 602 1396 344
.35
40 2.492
45 1186
o .50 3.195 0.661 | 12.110 0.137 1160

'.“ 1 . i .

.857
.728
.612
.509
.419
.341
.277
.225

N
QOOO0OO0O0O
SLWNONE-
[cNoNeoNoNeNe]

o

.629 7.141

o

.222

[« NeNeNoNeNoNoNeNeNol

[eNoNoNeoNoNoReoNe NNl
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Figure captions

i T

Fig. 1 Infinite solid with zig-zag periodic array of holes and cracks.
Fig. 2 Unit rectangular region and notation of geometric quantities.
Fig. 3-1 Equilateral triangular array of holes and cracks, b/c=0.577.
Fig. 3-2 Square array of holes and cracks, b/c=1.

Fig. 4-1 FI(l,O) and FI(l, 0.01) for b/c=0.577.

Fig. 4-2 FI(l,O) and FI(]" 0.01) for b/c=1.

Fig. 4-3 FI(l,O) and FI(l, 0.01) for b/c=1/0.8.

Fig. 5-1 Relation between o and L for uniaxial compression, b/c=0.577.

Fig. 5-2 Relation between ¢ and L for uniaxial compression, b/c=1/0.8.

- B b

Fig. 6-1 Relation between L;zx and b/c for uniaxial compression.

i g o

Fig. 6-2 Relation between Lpyyx and c/a for uniaxial compression.
3 Fig. 6-3 Relation between L;;x and b/a for uniaxial compression.

Fig. 7 Relation between L,y and crz/a1 for biaxial compression, b/c=0.577.

Fig. 8-1 Cx and Cy for b/c=0.577.

P

Fig. 8-2 Cx and Cy for b/c=1.

Fig. 8-3 Cx and Cy for b/c=1/0.8.

PR

Fig. 9 Relation between Cx and fH for zig-zag holes with cracks, L=1.5.
Fig. 10 Relation between Cx and fH for zig-zag holes without cracks. (L=0).
Fig. 11 Relation between Cx and fH for b/c=0.577 and 1.

Fig. 12 Stress-strain curves for uniaxial compression, b/c=1/0.8.

- oo . 2 D

. Fig. 13 Relation between Cy and fH for L=1.5.

Fig. Al-1 Geometry of a circular hole with edge cracks.

o e .

Fig. Al1-2 Subdivision of crack for numerical evaluation of weighting

-~

; function.
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- NOMENCLATURE
X,y Cartesian coordinates
Y
i{ﬁ z complex coordinate = x + iy
N
e 2b, 2c horizontal and vertical spacings of holes
2y
a hole radius
\: ,(
F*: £ initial porosity = ma’
s‘,:;o H 2be
X
ﬁk 2 crack length
!’l‘.’
L normalized crack length = f
LY
b\z"
3?? Lmax maximum normalized crack length under uniaxial compression
&:‘i"l
:gk E Young'’'s modulus of material
s
_ v Poisson’s ratio of material
’::‘: 3-v
D P K = (plane stress), = 3 -4y (plane strain)
] 1 P
Wy +v
\:':" E
A - ——
lwﬁf G shear modulus 2(1+0)
ot E .
aﬁz Eo Eo = E (plane stress), Eo 1.2 (plane strain)
0
N,
e':
o E Young’s modulus of cracked porous solid;
!'rﬁ X g P
K compression in the x-direction
ﬁ;i Ey Young'’s modulus of cracked porous solid;
N
;2@ tension in the y-direction
VvV E
Cx modulus reduction factor in the x-direction = EE
:lf":'..! o
e E
Sﬁ‘ Cy modulus reduction factor in the y-direction = EX
Y} 0
o
~ T ay, rxy stress components
o
}Qﬁ 91r 9y applied stresses at infinity
“v"
WQ ao positive reference stress
" A - ﬁ
'::: 1 00
'E:'i:
T
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é(z), ¥(z)
qm(sm)

Ic

Qi

™1

(Al;tO)

resultant force components
displacement components

mean value of u along EF

mean value of v along FG
complex stress potentials

weighting functions of force doublet densities

subdivision number for
number of subdivisions

number of subdivisions

the crack
of EF

of FG

length of intervals on E

o]

-
2N1

length of intervals on FG =

zlo

2

Mode I stress intensity factor

dimensionless stress intensity factor =

critical stress intensity factor

-al(na)h

normalized compressive stress = ———
Kic

-al(na)k

normalized compressive strain =~ ———E;———
c

DO ‘5 .’!:ﬂ.

X

ao(nz)*

0

E
X

Sy

'éi.‘s 1’,":




Figure 1
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Figure 2

- 99 -




o O O
O O O O

Figure 3-1

- 100 -




O O O
O O O

Oy Figure 3-2

¥ i‘¢
14«." - 101 -

" S AT Y

A9 0% % Ny a2y AR IO
“, “ "ﬂ! '\Iﬁ“-"-‘ﬂ» g 0 . (& R AL “h‘i i “ﬁ“sﬂ- : \‘q‘ﬁ .\"tt.a. é‘n‘ |



e b

F1 (1,0)
- FI(1,0.01)

R 04
' c/a=8

c/a=14
c/a—>

: . Figure 4-1

wia - 102 -

I e L e L e e L T



Figure 4-2
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CHAPTER 1V

A MICROCRACK MODEL OF DILATANCY IN BRITTLE MATERIALS

by
S. Nemat-Nasser* and M. Obata"*

ABSTRACT

For a solid containing preexisting flaws, overall nonlinear
constitutive relations are developed on the basis of a model which endows a
preexisting flaw with frictiQnal and cohesive resistance, and which includes
nucleation and growth of tension cracks at the preexisting flaw, as it
deforms under the action of an overall compressive load. The preexisting
flaws may be randomly distributed or may have an initial preferential
distribution. They may be of varying sizes and orientations. Even when the
flaws are randomly distributed, their preferential activation, and the
nucleation and growth of tension cracks at preferential flaws, render the
overall response of the solid highly anisotropic. As a first step toward a
more complete constitutive micromechanical modeling, a dilute distribution
of preexisting flaws is assumed, rate constitutive relations are developed
for loading and unloading, which include hysteresis, dilatancy, and other
characteristics observed experimentally in rocks, ceramics, concrete, and
similar brittle materials. A number of illustrative examples are worked

out, and the results are compared to relevant experimental observations.

* Professor of Applied Mechanics and Engineering Sciences, University of
California, San Diego, La Jolla, €A 92093
** Postdoctoral Research Fellow, Department of Applied Mechanics and

Engineering Sciences, University of California, San Diego, La Jolla, CA
92093
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1 1. INTRODUCTION
¢ Ceramics, rocks, concrete, and similar brittle materials have a highly
nonlinear and complex overall response to applied loads. This includes
load-induced anisotropy, hysteresis, dilatancy, and strongly path-dependent
stress-strain relations. Such complex behavior, to a great extent, stems
" from the activation of microdefects which are commonly present in these
8 materials. The defects may be preexisting cracks, cavities, soft or hard
inclusions, etc. These defects serve as stress concentrators and therefore
they locally change the state of stress, leading to the formation of tension
} cracks, even under overall compressive loads. It has been demonstrated
\
? experimentally and supported by theoretical models that tension cracks of
this kind nucleate and grow in a highly preferential manner and therefore,
$ even when the microdefects are randomly distributed, so that initially the
? solid is basically isotropic, the response of the solid becomes highly
anisotropic and stress-path-dependent as loading continues; see Horii and
Nemat-Nasser (1982). The failure modes in compression of solids of this
“ kind have been extensively studied and modeled analytically, as well as
) illustrated by model experiments; Brace and Bombolakis (1963), McClintock

and Walsh (1963), Hoek and Bieniawski (1965), Scholz (1968), Scholz and

K Kranz (1974), Zoback and Byerlee (1975), Holcomb (1978), Holzhausen (1978),
- Paterson (1978), Kachanov (1982), Moss and Gupta (1982), Nemat-Nasser and
;1 Horii (1982), Kranz (1983), and Horii and Nemat-Nasser (1985a,1986). In
; particular, it has been shown by Nemat-Nasser and Horii (1982) and Horii and
, Nemat-Nasser (1985a,1986) that axial splitting, often observed under
3 uniaxial compression, can be explained in terms of a model which con#iders
E an isolated preexisting thin straight flaw endowed with frictional and
; cohesive resistance, which nucleates tension cracks at its tips under the

3% - 124 -
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action of axial compression. The model of a sliding crack with frictional
resistance (but without cohesive resistance) has been criticized by some
authors (e.g., Holcomb and Stevens, 1980; Janach and Guex, 1980; Dey and
Wang, 1981; Costin, 1983) on the grounds that actual electron microscopic
observations do not seem to support the presence of such cracks, but rather
show a complex pattern of axial tension cracks emanating from a variety of
sources. There are, however, a number of reasons which seem to support the
usefulness of the basic model for the micromechanical constitutive
formulation of the inelastic response and the failure modes of materials of
this kind. These include: (1) The criticism of the sliding crack model has
been based on qualitative aspects of microscopic observations. (2) Recent
data by Sondergeld and Estey (1982) and Yanagidani et al. (1985), suggest
that the focal mechanism for stress induced acoustic emission involves
double couples and hence shear motion. (3) Recent quantitative stereologic
evaluation of SEM analysis of rocks by Wong (1985) shows that the results
obtained from the sliding crack model are not in conflict with SEM
observations. Furthermore, recognizing the limitations of the model (e.g.,
two-dimensionality), Wong comments that the agreement between the
theoretical prediction and the quantitative microscopy results 1is quite
remarkable. (4) Recently, Scholz et al. (1986) have reexamined Bridgman's
ring experiment by subjecting a fully jacketed ring of pyrex glass tightly
fitted over a polished and hardened steel rod, to overall hydrostatic
pressure, and observed isolated axial cracks growing in a stable manner from
interior tiny flaws of no greater than 20um. Analysis based on Nemat-Nasser
and Horii’'s (1982) sliding crack formulation showed that wunder the
prevailing all-around compressive stresses in this experiment, microflaws of
abount 10um are sufficient to initiate such axial cracks. Scholz et al.
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(1986) conclude that "axial cracks can be initiated by tiny flaws and grow
stably for long distances under an overall compressive stress state. Thus
shear cracks or other types of stress concentrations would not necessarily
be expected to be prominent in SEM studies. In a heterogeneous material
such as rock, where stress concentrations like those we observed at the
ring-rod interface, can be expected to occur commonly at grain boundaries,
it is not surprising that axial cracking predominates." In view of these
observations, and considering the resolution 1limit of the SEM (about
0.02pm), criticism of the sliding crack model based on the qualitative

examination of SEM results seems to require reevaluation.

Notwithstanding the above comments, we do not intend to suggest the
sliding crack mechanism as the only source, or even the major source, of
axial cracking. (Indeed, model studies (Nemat-Nasser, 1985) have shown
microcracking under axial compression from inclusions and cavities of
various geometric shapes.) What we intend to do is to consider the sliding
crack model as a representative of a thin flaw which can deform plastically
(and hence has cohesive resistance) and can slide (and hence has frictional
resistance), and in a systematic and rigorous manner examine the results.
These results then can be used to study the merits or shortcomings of the

basic model.

To this end, we shall consider a solid which contains a dilute
distribution of such 1ideal flaws. The flaws may be of varying sizes and
orientations which may have either random or preferential distributions.
The matrix is assumed to be {isotropically elastic. Inelasticity and
anisotropy develop because of the frictional and cohesive resistance of the

preexisting flaws, and because of the formation and growth of tension cracks
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at the tips of the flaws. During unloading, the effects of frictional
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locking and the cohesive resistance of the flaws, their backsliding upon

- .-
. -

further unloading, the partial closure of tension cracks, and finally the

' residual strains are included. All calculations are made for a two-

.

£

.

-

dimensional model. Once the basic parameters of the model are defined, then

-"‘

the problem is analyzed consistently and systematically, without introducing
14 additional assumptions. This allows us to make a judgment on the merits of
a the model from the obtained results which are then a true reflection of the

basic model’s assumptions.

5 2. FORMULATION
i We consider a micromechanical modeling of the inelastic response of
brittle materials such as ceramics and rocks at relatively low temperatures
; and under moderate confining pressures so that: (1) rate effects can be
é ignored; and (2) micro-cracking and inelastic slip at preexisting flaws can
‘ be regarded as the basic micromechanisms giving rise to inelasticity; for
'? rather detailed discussions and extensive lists of relevant references, see
& Paterson (1978), Kranz (1983), and Horii and Nemat-Nasser (1986). The basic
) building block of the model is the mechanism shown in Fig. 1. It consists
% of an isolated preexisting flaw PP’ and tension cracks PQ and P'Q’' embedded
§ in an 1isotropically elastic unbounded solid. Under the action of farfield
\ compressive stresses, the preexisting flaw PP’ undergoes frictional sliding
E which may be accompanied by cohesive (due to possible plastic deformation of
R}
ﬁ the flaw) resistance as well as, possibly, dilatancy normal to PP’, due to
Z the deformation of the flaw and the possible presence of asperities. The
"f‘ relative deformation of the two faces of the flaw results in the creation of
§ high tensile fields at the flaw's tips and leads to the formation of tension
3 cracks which grow toward the direction of maximum compression. The model of
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frictional sliding of preexisting cracks (without cohesion or dilatancy)
which leads to the formation of tension cracks at its tips was originally
suggested by Brace and Bombolakis (1963) and has been studied both by model
experiments and analytically by a number of investigators; McClintock and
Walsh (1963), Holzhauzen (1978), Moss and Gupta (1982), Kachanov (1982),
Nemat-Nasser and Horii (1982), Horii and Nemat-Nasser (1985a,b,1986), and
Steif (1984). Although micromechanical observations on actual rocks have
not clearly identified preexisting cracks as the |Dbasic source of
inelasticity in rocks, recent analysis by Wong (1985) seems to suggest that
the model is indeed viable and does capture both qualitatively and

quantitatively some of the main features of the problem.

In this section we shall calculate the inelastic strain due to: (1)
slip along the preexisting flaw, (2) dilatancy normal to the flaw, and (3)
the associated out-of-plane tension cracks at the tips of the flaw. (ZT%&
dilatancy normal to the flaw will be assumed to be very small, but its

effect on creating tension cracks at the tips of the flaw is significant.

The total strain at each state depends on the parameters that define
the basic model shown in Fig. 1. The values of these parameters are highly
stress-path-dependent. Hence, an incremental solution is necessary. Using
the computed strain tensor, we formulate a rate-constitutive relation, using

the equilibrium conditions for a representative flaw and the associated

tension cracks.

Throughout this paper we shall use a fixed rectangular Cartesian
coordinate system, x;, Xx,, as the background frame of reference. To

simplify notation, we use the following direct representation:
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a:b =~ a; by,

L:b = Ly by,

a® = a;b,, 1i,j,k,1=1,2,
#y where repeated indices are summed.

2.1 Description of Strain

The total strain consists of an elastic strain due to the elastic
deformation of the matrix, plus an inelastic strain due to slip and

dilatancy of the preexisting flaws, accompanied by inelastic strain due to

iy -

micro-cracking. In the sequel all physical quantities with the dimension of

-

length are normalized by dividing by half of the preexisting flaw length, c.
For example, 1if b is the slip (assumed constant) along flaw PP’', we use
b = E/c to represent the dimensionless slip. Similarly, if d is the

[ displacement (assumed constant over the flaw length) of a flaw normal to its

face, we use d = E/c.

o Let
N
4
f = c2N (2.2)
;
»
" represent the density of the flaws of length 2c and orientation ¢, where N
! is the number of such flaws per unit area. The strain due only to slip b of
{ these flaws then is
"
y
W)
q £y = 2be°, (2.3a)
where
\ 1| -sin 2¢ cos 2¢
: Bo 2 [ cos 2¢ sin 2¢ ]' (2.3b)
K - 129 -
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e
-
:&: Similarly, the strain due to dilatancy d normal to PP’ is given by
o
g cq = 2£dp, (2.4a)
» -
e where
s
ot 2 i
a4y - cos?4¢ cos ¢sin ¢ | (2.4b)
£ B1 cos ¢sin ¢ sin2¢ ’
;g: see Appendix A. Since the sliding-induced opening of a preexisting flaw
L)
U
5? normal to the surface must be bounded, we shall assume that this opening
o
'(.e
nt becomes saturated and hence use
.‘r‘:.
o -
P d=dy(1 - e 5Py, (2.5)
t’::
L Note that b (and hence d) is assumed to be uniform along the flaw. This
}éf simplification is reasonable once tension cracks are suitably long.
o
1, #l
»:- Slip b and dilatancy d introduce normal and tangential concentrated
¢ gaps of values (b sin § + d cos #) and (b cos § - d sin ), at points P and
G
;& P’, for cracks PQ and P'Q’, of common length £, and orientation 4 with
i)
O
ta' respect to the preexisting flaw PP'. The strain associated with these gaps
DLy
vg can be computed and is given by
L
I
a,\
a g = fblg, + fdig,, (2.6a)
:’:‘A
- where
R - -
e _ 1| -2sin ¢cos(f + ¢) cos(f + 24) (2.6b)
b‘ 3o 2 ] cos(§ + 2¢) 2cos ¢sin(d + ¢) ’ :
& i
.f} a4 _1 2cos ¢$cos(f + ¢) .sin(ﬁ + 24) , (2.6¢)
: = 2 sin(4 + 2¢) 2sin ¢sin(d + ¢)
L A
B
‘thed see Appendix B.
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The applied stresses change the crack opening displacement. This 1is
not included in expression (2.6a). Under the condition of a positive Mode I
stress intensity factor at Q and Q' (crack closure will be considered later
on), 1i.e., for K; > 0, the strain due to the change in crack opening caused

by the applied loads can be computed and is given as follows:

1 - v

£4 = f-—7§:—-n£2[4(g:g)g + (9:8)81, (2.7a)
where
_ cos?(§ + ¢) cos(8 + ¢)sin(d + ¢)
a [ sin(d + ¢)cos(d + ¢) sin?(8 + ¢) } (2.70)
da -sin2(8 + ¢) cos2(8 + ¢) |.
B =25~ [ cos2(d + ¢) sin2(d + &) |’ (2.7¢)

see Appendix C. 1In (2.7a), p is the shear modulus, v is Poisson’'s ratio,

and o is the stress tensor,

With L denoting the elastic modulus tensor of the matrix material, the

total strain tensor is now given by

-1

£ =

-

g

+

2fbp, + 2fdp,

+ fblq, + fdiq, (2.8)

+ f-l—é'#—"wl’[ﬁ(g:g)g + (a:8)B].

2.2 Rate Constitutive Relations

To complete the formulation, we must relate the kinematic parameters b,
d, £ and # to the applied stress g. We shall do this by calculating the

opening mode stress intensity factor, K;, at crack tips Q and Q' 1in two
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g different ways: (1) by considering the applied loads and the condition of

i

i slip across the flaw (see Fig. 2a), as discussed by Horii and Nemat-
Nasser (1986), and (2) by calculating the stress intensity factor in the

i presence of the applied stress and the imposed concentrated gaps at P and

P’ (see Fig. 2b).

o As has been shown and verified by numerical examples by Horii and
;' Nemat-Nasser (1986), the Mode I stress intensity factor at Q and Q' of
Y

Kl cracks PQ and P'Q’ can be computed with very good accuracy by considering an

equivalent crack of length 22, subjected to a pair of colinear concentrated

! forces, F, as well as the applied overall stresses, as shown in Fig. 2. In

P
7"

i this representation, F denotes the driving force transmitted across the
preexisting flaw; it lies along the flaw and equals in magnitude the
resultant force transmitted across the flaw. Following the procedure

outlined by Horii and Nemat-Nasser (1986), we obtain

. - 2 o - ; :
(. K; "L+ 1) (9:py - 7.)sin 6 + o:a /n2, (2.9a)
*
L
o where
y
— « -n|b :

" P2 = Pot Bpy, 2" =0.27, 1. =2 PN b = [Piblar. (2.9b-0)
i
k Here, p is the coefficient of friction, r_ is the value of cohesion at the

current value of the total absolute value of slip (we shall assume that
'
q cohesion is an exponentially decaying function of the accumulated slip with
e R
" decaying factor 1n defined by (2.9d)), and r2 is the initial cohesion. The
- parameter 2" is introduced in such a manner that (2.9a) is valid even at
[}
)
’
’ crack initiation, i.e., at £ = 0*. Since the opening mode stress iutensity
*
: factor for a closed sliding crack is maximum in a di:ection which makes an
-
" angle 4, = 0.397 with the crack orientation, £" is obtained by equating the
:
A
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o stress intensity factor given by (2.9a) at £ = 0 and § = §, to that maximum
N5

L
.\3 value. In the present application the effect of tension cracks is important

once they become relatively long. Hence, whether or not 2% is included in

'ﬁa Eq. (2.9a) does not affect the results, although its presence renders K;
g
L =,
A non-singular at £ = 0.
o
" The Mode I stress intensity factor associated with the gaps and in the
v
i
;ﬁ presence of applied stresses, on the other hand, is given by
Al
o
vy ' - 1) 1 . . nd
K, 1 - J2n(l + ) (b sin 8 + d cos ) + g.g,/——z , (2.10a)
;'l'.
4
: ; where
S
R x2
L 2“ - t; 2.
e 37 2 (2.10b)
,\'_-_ see Appendix D.
’-'.:

To obtain a relation between b and o, we require

‘-~

K; = Ky’ when g:py - 7.2 0. (2.11)

- -

g 'ﬁ'.’"" - ATa AR

Furthermore the crack length £ is obtained such that

K, = K, (2.12)

-

where K, 1s the critical value of the stress intensity factor in the opening

Yy
" mode. # is determined so as to maximize K; for a given length 2.
0
Shg] . .
"5- It should be noted that model experiments (Nemat-Nasser and Horii,
...;. 1982) and exact analysis (Horii and Nemat-Nasser, 1983, 1985a) show that
'

tension cracks emanate from the flaw tips at an angle of about 70° with
'
"
:0:'. respect to the orientation of the flaw, and curve toward the direction of
()
R the maximum compression. The model shown in Fig. 1 substitutes the curved
£
,,:‘,:,
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A
KA
'f:
‘c:I crack by an equivalent straight one; the equivalence is in the sense that
BCR
!
;ﬁ%l the orientation # of the equivalent straight crack is computed at each
et incremental loading by maximizing K; with respect to #.
:v:: Because of the complex and nonlinear relations that exist among various
Ht
L&)
f‘,', parameters which defined the basic model shown in Fig. 1, the overall
A,
“ stress-strain relation will be highly nonlinear and stress-path-dependent.
N
oy It is therefore necessary to formulate the problem incrementally. To this
s . .
*Q 5 end we will express £, ¢, and b, in terms of ¢, for given loading regimes.
) These quantities can be written symbolically as
“
TR
s : : .
N 4 = A6, 0 =B:6, b=2C:o. (2.13a-c¢)
T - - = =
N
~'~." We will calculate the second-order tensors A, B, and C for prescribed
’
o
5;- loading regimes. Note that, in view of assumption (2.5), we have
e
’-
oo,
A"
N d = ¢(dy - d)b
¢ (d, )b. (2.14)
-".: With Eqs. (2.13) and (2.14), and upon time differentiation of (2.8), we
'. o obtain the following rate constitutive equation:
J
S £ = D:o
tdets ~ ==
‘5:"‘.’ -
as DL
;';‘:'
‘l,.‘ 1 -V
1% + f(bq, + dq, +Tﬂ2[4(g:g)g + (g:8)B11®A
* b
:-": l - v
::',_ + f(bl_r__0 + dlsl + Tﬂ—xl"’[a(g:é)g + 4(2:2)2 + (g:z)é + (g_é}z}?yg
A
\'{'-
3 + £(2py + 2q0 + $(dy - d)(2p, + £q,))8C
J".r w
.} -
e + £ Y a2 (4aea + fop],
.|.'. M L
o
o+ where
o
oty
.n;,.
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o

:’ A%}

LA
] aﬁ aq aq
i" - — - _"o - _"'_l -
*':3::.: Y a0 ° To 30 ° I 30 - (2.15b-d)
ol
v'(.t
2.3 Specific Cases During Loading
\"-‘\j*
)
1} 5
c.}: In what follows, we consider various loading cases separately. We
e
Uy
vy shall use a symbolic representation, and give the details of expressions
‘;:‘: such as 9K;/3b and b, in Appendices E and F.
i
L"
".’:: (1) Sliding occurs without crack growth: This happens when the driving
shear stress on the flaw exceeds the frictional and cohesive resistance of
Loyt
O‘I
:?.:u the flaw, i.e., when g:p, - r. 2 0, while K; < K,. From condition K; = K,
e ~
u::‘: we obtain, by time differentiation,
.1.‘\
o 3K, 2] S .
& - ® b e 2.16)
. :“:
i,.i where b, and b, are the matrix coefficients of &, obtained from (2.9a) and
' - -
from (2.10a), respectively. Thus we have
g
J : 1 .-
g b= e (- baid, (2.17)
! b " ab
} and, hence,
r’;"t
ol 1
B) - — - - - -
._.,,‘..': ¢ 3K, 3K’ (by - by), A=0, B =-0. (2.18a-c)
e b " ab
:’; (ii) Sliding occurs with crack growth: This happens when K; = K. and
AN
::93,. g:p2 - 7. 2 0. The problem can be stated as follows: Maximize K; with
J;i“
100! respect to # and b under the condition that K; = K{. With the aid of a
::E::, Lagrangian multiplier, we arrive at the following conditions:
1550
,
o
et
LW
o
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Ky = Kf = K,

(2.19a,b)
3K, dK;' 3K, 3K’ 0
39 b ~abas -0
Time differentiation yields,
3K, . K, . 3K, . .
aalt it e
aK,’. ;) S 3K,'. . 2 20
32 2+ ) 0 + b b= Ez.g, (2.20a-c)
aJ aJ aJ . s
Y’ 2+ Y] 0 + b b = by:g.
These linear equations yield f, é, and b. The solution is in the form

(2.13).
2.4 Specific Cases During Unloading

After a continued loading regime, we consider unloading by reducing the
applied stresses. Unloading at specific flaws may also take place when, for
example, we change the load path. Our analysis of unloading includes all
cases when the net shear traction, o:p, - 7., transmitted across a

preexisting flaw decreases for whatever reason.

(1) Crack grows without sliding: Upon unloading, cracks may continue to

grow as the lateral compression is reduced but, because of an initial
locking of the flaw, the maximum gaps at P and P’ remain fixed. The

conditions for crack growth then are

K’

KI' -KC‘ ao

-0, (2.21a,b)

Equation (2.21b) ensures that cracks grow in a direction which maximizes

Ky'. Time differentiation now yields




.'l'

Ml

"

B Ky KL

2 31 Lty - b

S sk K (2.23a-b)
o K\, 8 'L 8. .
: TR TR T TIRA S TR - -2

.QQ
lék; From these we have £ and § in the form (2.13). Since b remains fixed, in
‘gt .
' gz this case b = 0, and hence C = 0.

N - -

:&? (ii) Backsliding occurs without crack closure: When the residual shear
Y

Hd

:Q? stress on the preexisting flaw overcomes the cohesive and frictional
ey

Dh resistance, backsliding of the flaw may take place. Since the frictional
ﬁ?j and cohesive resistance on the preexisting flaw acts against the direction
Z't‘?'

Lo

g? of the relative displacement, K; in (2.9a) must be redefined for the
iy

v.¥h unloading case by

o 2

:i:e\: Ky = ]1‘_—(2_'_—2.) (g:g2 + r.)sin 4 + g:g./nl, (2.24a)
)

A

o P2 = Bo - HP:- (2.24b)
i

B

%%s Before backsliding takes place, K; of (2.24a) may formally be larger than
e

:3’ the actual stress intensity factor K{ obtained on the basis of the applied
;24 overall loads and the existing gaps at P and P'. This is similar to the
LA

O

iﬁ& loading case with g:p, - r, < 0, so that no slip occurs. The quantity K,
K I.Q

e defined by (2.24a), attains its usual physical meaning only when backsliding
ﬁf\ occurs, or 1is just about to occur. Therefore, the condition for the
ﬁ )

Q#

::ﬁ initiation of backsliding is given by

; (

Y Kr = Kyps (2.25)
;0

33 see Appendix G. During backsliding, however, we require that

Wy

!.a‘ KI - KI"

e (2.26)
Ve
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Upon time differentiation at fixed £ and # we obtain an equation similar to

(2.17) for b.

(iii) Crack closure without backsliding: When crack closure occurs, the

strain tensor is given by

€ = L 1:0

- -— -

+ 2fbp, + 2fdp,

1 1 1 2
f w1 - o (Z:E) (b sin § + d cos §) a (2.27)
zm
+ fT(b cos § - d sin 8)B
vy £V 92 (0288
8u AR
where £ denotes the maximum crack length; see Appendix H. From the time

differentiation of (2.27) and Egqs. (2.13), we obtain the rate consti&zxt%g&

equation for this special case in the following explicit form:

1o im
ro
1 1o
- 13

+

£ [2p, + 2¢(d, - d)p,

L1 p
x 1 - v g:a

(sin 8 + §(dy - d)cos 8)(b sin ¢ + d cos'$)3®)

2
+7"'(cos 8 - ¢(dy - d)sin )] ®C

1 _p 1 2 l - v 2
f (21r - v (212)2 (b sin # + d cos §) a®a + &8s nfiB®p}.

+

Note that # is fixed in this case.

The condition for crack closure without backsliding of the flaw is
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KI' - 0,
whose time differentiation at constant # and b yields
. K’ .
2 - (Ezzg)/ (7ir ) = A:g, B=C= 9. (2.30a-c¢)

(iv) Crack closure with backsliding: The conditions are

K; = K;' = 0. (2.32a,b)

Since 4 remains constant during crack closure, only 2 and b must be
expressed in terms of ¢. This is done by time differentiation of K; = 0 and
K;’ = 0 at constant # and by solving the resulting linear equations for 2

and b. § - 9 because # remains constant.
2.4 Comments on the Model

The model presented above includes a number of features which have been
suggested by several researchers in the past, e.g. Brace and
Bombolakis (1963), Zoback and Byerlee (1975), Kachanov (1982), and Moss and
Gupta (1982). In particular, Moss and Gupta have obtained nonlinear
stress-strain and dilatancy relations based on a sliding preexisting crack
with tension cracks (wing cracks) emanating from its tips. These authors
include frictional and cohesive effects, and calculate the inelastic strain
associated with the slip of the preexisting crack as well as of the tension
cracks. In their model, however, the orientation of the tension cracks
(wings) relative to the preexisting crack is fixed throughout the entire

loading history and must be prescribed. Moreover, in their model it is

necessary to prescribe an initial length and crack opening displacement for

the wings. In the model presented here, the flaws at which tension cracks

nucleate, the orientation and the length of the tension cracks, their
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opening displacement, and whether they continue to grow, become dormant, or
actually close, are all obtained as part of the solution to the problem and,
indeed, change during the course of 1loading and unloading, in a rather
complex manner. Indeed, in our model the tension cracks may continue to
grow at a state of unloading, because of the 1locking of the preexisting
flaw, as illustrated in the examples given in Sec. 4. Furthermore, we have
attempted to render the model self-consistent in the sense that the stress
intensity factors at the tips of the tension cracks are obtained on the
basis of the existing gap (created due to the sliding of the preexisting
flaw) and in the presence of farfield loads, and these are then made to
correspond to the stress intensity factors calculated on the basis of the
applied loads and the effective total force transmitted across the
preexisting flaw. In the model of Moss and Gupta, the stress intensiﬁy
factors are calculated only on the basis of the applied loads and the
effective force across the preexisting crack. We note that if the
preexisting flaw is locked, then the stress intensity factors must be
computed on the basis of the existing gaps and the applied loads, and these
stress intensity factors may not be equal to the ones calculated on the
basis of the applied loads and the effective force across the preexisting

flaw, when the flaw remains dormant.

3. AVERAGE QUANTITIES

So far, the problem has been formulated for flaws of fixed orientation
¢ and size 2c. When a dilute distribution of preexisting flaws is involved,
the interaction effects may be neglected, and the overall strains and strain
rates may be estimated by a simple average of the individual contributions.
To this end let N = N(¢) be the number of flaws of orientation ¢ and size 2c

per unit area. Hence, f = c2?N is given as a function of ¢. The average
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WS
Qﬁg strain, €, then may be computed from
R
~h
0 _ 1
g R MO (3.1)
ﬂ?f where €(4,f(¢)) is given, in our analysis, by (2.8) or by (2.27). A similar
Yo -
"
5%: expression can be written for the average strain rate. When a finite number
)
e ¥
o of specific orientations of preexisting flaws is involved, the integral in
jgﬁ (3.1) reduces to a finite sum,
l:.:i
o _ 13
"c':‘. E -F Z £(¢alf(¢a))l (3-2)
A a=1
$,' where M is the total number of involved orientations.
2
:ﬁd In the formulation presented above and in the preceding section, no
‘,,“'.
;“ attempt 1is made to include interaction among neighboring flaws and their
S
f? associated cracks. There are a number of possible ways that this
A%y
?ﬁ: interaction may be included. Perhaps the most effective way would be to
OO\E
- estimate the stress intensity factors at the crack tips by considering
()
a"li‘t'
ﬂkg several interacting flaws or an infinite row of such flaws, in the manner
O\
ﬂﬁg discussed by Horii and Nemat-Nasser (1983, 1985a,b, 1986). This poses an
LA
.3_ extremely complex mathematical problem where, although solvable as shown by
iy
0
555 Horii and Nemat-Nasser (1985b), the resulting equations are so involved that
X
o
$&’ they do not 1lend themselves to simple analytic calculations of the kind
o
- given in the present paper.
:"' i
4%
W
:@; An alternative approach is to consider an averaging technique similar
Oy )
480
e to the self-consistent scheme; see Budiansky (1965) and Hill (1965). This
ol would require the solution of the problem of out-of-plane crack growth from
{:; a preexisting flaw embedded in a linearly elastic but anisotropic material,
_.‘\' o
at which currently is not available. Therefore, any improvement on the simple
he
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jﬁf averaging procedure given by (3.1) seems to require either extensive and
0
iy complicated computations beyond the scope of the present work or it must be

based on additional simplifying assumptions, which is not our intention at

ygﬁ this time.

ot

k .

%?' In the following section we shall assume a dilute distribution of
i

o preexisting flaws, wuse the simple averaging given by (3.2), and present a

ol number of illustrative examples.

4, RESULTS AND DISCUSSIONS

LRy In this section, we shall illustrate the predictive capability of the

"

,..

:ﬂg model presented in the preceding section, in terms of several numerical
¢

examples, and discuss the results.

gt
:ﬂ% The basic parameters of the model are:
Vot
{»? 1) £ = c2N which represents the density and the size of the flaws. It can

ny; be given any suitable distribution in terms of the flaw orientation ¢.

L),

,\r“ In our examples we shall assume it to be constant.
o

-?;. 2) M, which is the number of flaw orientations between 0° and 90°. In our

e

{d( examples we shall assume an 1isotropic initial flaw distribution, and

R

éf: therefore use finite, equally spaced orientations between 0° and 90°.
2] - :
.:.. K, - Kc/(rgjc) which is the dimensionless critical value of the stress

™ intensity factor. Since typical values of fracture toughness, Ec, for

{ th.’

e

gﬂﬁ rocks are of the order of 10% ~ 108 Nm™3/2, taking a typical flaw length

o

ﬂg‘ to be of the order of 10°*m, and the cohesive stress to be of the order

s of 107 Nm™2, we estimate K, to be of the order of 1.

"I
N
Qié 4) dy which represents the 1limiting maximum flaw expansion (dilatancy)
:ﬁﬁ| normal to its face; see Eq. (2.5). It is nondimensionalized using half

., the flaw length c. It is also normalized by dividing by r%/u. Hence,

‘ | S

s
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d, = 1, for example, represents an actual maximum possible flaw expansion
of 0.5% of half the flaw length c when 7d/u = 5.0 x 1073,

5) ¢ which is the coefficient of the exponential saturation of the flaw
dilatancy with respect to the flaw slip. Since we normalize the slip
b (and the dilatancy d) by measuring it in units of /4, ¢ (and 79 in
item 6 below) is measured in wunits of u/r2 which is of the order of
102 ~ 103, a rather large dimensionless number. For all examples, we use
¢ = 1; hence, full flaw expansion is attained at flaw slips of less than
1% of the flaw length.

6) n which is the coefficient of the exponential decay of the rate of
cohesive resistance of the preexisting flaw.

7) p which is the coefficient of internal friction possibly having a value
between 0 and 1.

8) v which is the Poisson ratio of the elastic matrix. In actual cases, v
should be interpreted as the average overall Poisson ratio of a solid
with microdefects.

For the examples displayed in Figs. 3-6, we have used f = 0.3, M, - 10,

v=20.25 ¢ =1.0, and, unless otherwise indicated explicitly, K, = 1.0,
dg - 0.05, n =0.05, and u = 0.30, In these figures, stresses are
normalized by r? and strains by (rQ/u).

Figures 3a and b show typical responses in uniaxial compression. In

Fig. 3a the normalized overall volumetric strain and in Fig. 3b the
normalized overall axial compressive strain are plotted on the horizontal
axis in terms of the normalized compression as ordinate. As is common in
the rock mechanics literature, compres:ion and contraction are viewed as
positive. Up to point A, the overall response is linearly elastic, because

the local stresses acting on the preexisting flaws are not as yet large
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enough to activate these flaws. At point A, frictional sliding initiates on
some flaws, and at point B, cracks nucleate at some suitably oriented flaws.
Upon further loading, tension cracks begin to grow, leading to substantial
dilatancy which quickly offsets the elastic volumetric contraction, leading

to overall volumetric expansion as the axial compressive load is further

increased; see Fig. 3a.

The stress-strain relation shown in Fig. 3b remains monotonic in
uniaxial loading, and closely resembles the experimentally observed behavior
of rocks; see, e.g., Brace and Bombolakis (1963). In the presence of
lateral tension, however, the curve would terminate at a point when a most
critical tension crack begins to grow in the axial direction in an wunstable
manner, leading to axial splitting; see Nemat-Nasser and Horii (1982). 1In
the presence of lateral compression, the stress-strain curve remains
monotonic and no failure is predicted by this model because the interaction
effects among neighboring flaws are not incorporated in the present model.
As has been shown by Horii and Nemat-Nasser (1985a,1986), the interaction
among a row of suitably oriented preexisting flaws can lead to the formation
of a fault, as tension cracks nucleate at these flaws and grow in an
unstable manner. The analytical computations associated with such a model
of faulting are rather complex and therefore considerable simplification is
necessary before such a failure model can be incorporated into a
micromechanically based constitutive relation of the kind developed in the
preceding section. The present constitutive model, therefore, 1is not

suitable for such loading regimes.

At point C in Figs. 3a and b, unloading has been initiated. The

response from C to D is linearly elastic. However, the material is slightly
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more compliant, since microcracking has led to certain stiffness
degradation. The difference between the elastic moduli at initial loading
and at unloading from point C is rather small in the axial direction, but it
is considerable for lateral tension (but not for lateral compression). This
is because during axial compression, cracks grow essentially in the axial
direction, and such cracks do not influence much the axial stiffness of the
material, but they do have considerable weakening effect for lateral

tension.

The instantaneous compliances at several states during the course of a
monotonic axial compression and of unloading are given in Table 1. As is

seen, strong anisotropy develops due to slip and microcracking.

From point C to point D in Figs. 3a and b, all the flaws are locked and
all the tension cracks remain open. Backsliding of some preexisting flaws
initiates at point D. 1In addition, some tension cracks grow before being
dormant. Considerable volumetric contraction begins to occur after this
state. In this example, no crack closure occurs during the entire unloading
process which leads to point E corresponding to some permanent total
volumetric expansion. This type of response has been inferred by Scholz and

Kranz (1974) on the basis of experimental observations.

In Figs. 4, we show examples of loading-path-dependency. Fig. 4a shows
the stress-strain curves for two different loading paths defined in Fig. 4b.
On path I, uniaxial compression is applied until point A, producing slip and
microcracks at some preexisting flaws. Then, with axial compression held
fixed, the lateral compressive stress is applied up to point C. During this
regime, no further slip occurs on any flaws because the driving shear

stresses on the flaws actually decrease, but not enough to initiate

- 145 -




’a ] ' . W U S . . o _ tan 2 .m aa a T

;E,

ﬁﬁz. backsliding. At point B, closure of some tension cracks begins.

Egs

55&. Path II, on the other hand, defines a proportional loading directly to
1?Lj point C’. Unlike for the path I loading, for path II no slip is activated.
;zég The response, therefore, is linearly elastic. The microstructures of the
,ﬂﬁ material for points C and C’' are quite different.

ha(n

i\i Our model includes a number of important parameters, and we now proceed
"

izsi to examine their effects on the model’s predictions. These parameters are
GJ:. listed at the beginning of this section. Except for ¢,n, and d,, they all
xsé have rather clear physical significance, and therefore their values may be
'?ﬁ% estimated on the basis of experimental observations. The parameter d,

’:E% represents maximum expansion (due to asperities or other effects) that the
f':: flaw itself can undergo because of sliding. The parameters ¢ and >ﬂ

;Z;ﬁ represent the rate at which flaw expansion saturates and the rate at which
e

! Qﬂ the cohesive resistance of the flaw decays, both measured per unit rate of
fgi’ sliding. These parameters have a rather significant influence on the
i:gg overall volumetric response predicted by the model.

1%’:

:j' Figures 5 and 6 show the effect of n and of d; in uniaxial compression,
vt

-5& followed by wunloading. As pointed out before, when (70/p) = 5.0 x 1073,

dy = 1 represents an a-tual maximum limiting flaw expansion normal to its

surface of only 0.5% of half the total flaw length, and hence it is small.

f:i:: Nevertheless, it has a rather significant influence on the response
A
e v predicted by the model.
W '?n‘
'u;ﬁ The influence of internal friction uz and the normalized fracture
[% ,j‘
“E( toughness K,  on the dilatancy in uniaxial compression followed by unloading
i~
c:;. is depicted in Figs. 7 and 8, respectively. As one would expect, a greater
‘Tv';-‘
O
el
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dilatancy results at lower frictional resistance of the flaws and lower
fracture toughness of the matrix material. It should be noted that there is
a considerable difference between the effects of the frictional parameter o
and the normalized fracture toughness K. on the overall response: whereas
the friction coefficient u affects the flaw response during the entire
loading and unloading regime, K 's influence emerges only with tension crack
initiation. Note also that normalized K, involves the flaw size 2c¢c and the
cohesive stress rJ, as well as the actual fracture toughness of the
surrounding material. Therefore, while the order of magnitude of K. can be
estimated on the basis of experimental observations, 1its actual value
involves quantities that are difficult to measure. For example, the
fracture toughness should actually reflect the behavior of aggregates of

crystals involving a variety of preexisting defects in a rock or ceramic

sample.

As a final illustration, we seek to fit the model to experimental
results reported by Zoback and Byerlee (1975). Since actual rocks contain
preexisting open cracks and pores which tend to close upon application of
loads, the 1initial stress-strain relations often reported are considerably
softer than the subsequent response. We have not included this in our
calculations, although it can easily be done, as detailed by Horii and
Nemat-Nasser (1982). Therefore, we do not seek to match the initial portion
of the stress-strain curves, but only compare their overall shapes. To

offset the initial soft response, we simply shift the model’s prediction, as

shown in Figs. 9a and b.

Since the model is a two-dimensional one, whereas the experimental

results are for wuniaxial compression of a cylindrical sample, a certain
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:ﬁ amount of adjustment in the model parameters is required. The reported flaw
g‘ size 2c is of the order 4 ~ 8 x 10™*, and taking f = N(c/V)3® ~ 0.2, for the
L two-dimensional case we choose f = (0.2)2/2 ~ 0.34, The Poisson ratio and

?$$€ the shear modulus are estimated to be v = 0.35 and g = 2.1 x 10* MNm™2,

i? based on the data reported by Zoback and Byerlee (1975). In addition, we

i take Ec = 0.7 MNm™¥/2, 79 = 21 MNm™?, and set 2c = 5.0 x 107m (therefore,

iﬂt K. = 2.1). The coefficient of friction is taken as p = 0.1, which is rather
S small, but may be justified on the grounds that many of the flaws seem to
¢ have been initially open and therefore their frictional resistance ought to

;;; be small. Considering the simplicity of the model, the fit shown in Figs.

E;? 9a and b is rather good. Nevertheless, in view of the number of free
&?i parameters involved, the comparison should be regarded as an illustration

jkﬁ and not necessarily a direct support of the viablity of the model.

; t In summary, it may be concluded that the micromechanical model
it
¢ consisting of preexisting flaws, with frictional and cohesive resistance to

i

sliding, and capable of nucleating tension cracks, seems to capture a number
" of important features observed in the response of brittle materials with
W

microdefects. The model presented here does mnot include the important

?@? interaction effects among neighboring flaws. Judging from results reported

§¢? by Horii and Nemat-Nasser (1986) on the failure in compression of materials

i of this kind under moderate and large confining pressures, we feel that !
_;; constitutive modeling based on the mechanisms considered by these authors

:{ﬁ should prove to be effective,
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'5' Figure Captions

0

% Figure 1: An isolated preexisting flaw PP’ with tension cracks P'Q’ and
PQ.

‘§ Figure 2: (a) An equivalent isolated crack with a pair of colinear

a concentrated forces applied at its center. (b) An equivalent

y isolated crack with concentrated gap at its end.

K

2

! . Figure 3: (a) Volumetric strain versus differential stress curve for a

5§ loading and unloading 1loop. (b) Axial strain versus stress

ﬁ curve for a loading and unloading 1loop; f = 0.3, M, = 10,

?? v =0.25 p=20.3, K, =1.0, dy = 0.05, and n = 0.05.

8

&

R Figure 4: (a) Axial strain versus differential stress for different
loading paths; £ =0.3, M, =10, v =~ 0.25, u =0.3, d, =0,

. K., = 1.0, and n = 0.05. (b) Loading paths.

e

K)

X Figure 5: Volumetric strain versus differential stress curves for various

W n; £=0.3, My =10, v = 0.25, 5 = 0.3, d; = 0, and K, = 1.0.

..‘

t

i Figure 6: Volumetric strain versus differential stress curves for various
dy; £=0.3, My =10, v = 0.25, = 0.3, K. = 1.0, and n = 0.05.

[y,

;3 Figure 7: Volumetric strain versus differential stress curves for various

? B f=0.3, M, - 10, v =0.25 K =10, d, - 0.05 and

B n = 0.05.

. Figure 8: Volumetric strain versus differential stress curves for various

K K. f=0.3, M, = 10, v =025 p=0.3, d,=0.05 and

% n = 0.05.

s Figure 9: Comparison with experimental data reported by Zoback and
Byerlee (1975): (a) Volumetric strain versus differential stress

) curve. (b) Axial strain versus differential stress curve;

W £f=-0.35 M=10, v =035 =01, K =-2.1, dg =0, n=0.

by p=2.1x 10 Nm2, and 79 = 2.1 x 107 Nm2.
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APPENDIX A: Strains Due to Crack Opening

The strain due to the crack opening displacement is given by
1N[°
€y "3V (ng[u;] + n;[uy]lds, (A.D)
-c

where V is the volume, N is the number of cracks in this volume, n is a unit
vector normal to a crack surface, and [u;] is the i-th component of the
crack opening displacement. From this, the inelastic strain due to crack
slip is computed as follows. 1In a local coordinate system with the crack on

the x,-axis,

N N -
€19 = €31 -vr[uz]dx - ybe- fb,
° (A.2)
€4, = €3 = 0, b = b/c.

Transformation to the global coordinate system is made with the following

matrix:

T = cos ¢ sin ¢

~ -sin ¢ cos ¢ |’ (A.3)

where ¢ is the angle between the local and global x,-axis. By use of this

matrix, we have

1] -sin 2¢ cos 2¢
& = 2fb 2 cos 2¢ sin 24 |’ (A.4)
in the global coordinate system.
For the Mode I crack displacement, we have
N
€4, = 2 xvr (u,]dx = 2fd, (A.5)
0

in the local coordinates, and
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cos?¢ cos ¢sin ¢
£a = 2£d cos ¢sin ¢ sin?¢ ' (4.6)

in the global coordinates.
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"',:: APPENDIX B: Strains Due to a Dislocated Crack

. L]

i::l'

N

= First, we examine the Mode T crack displacement. Consider an array of
‘f‘;‘;:' edge dislocations continuously distributed along -a < x, < a, x; = 0; see
s
: Fig. B.1. The corresponding normal stress is (see, e.g., Muskhelishvili,
4:‘5‘ ]

i 1953).

e . B(6)

et B

W -1 _ s

k:&:l 011(x2,0) 2” 1 - v I € - x E) (B°1)
‘-tft*' 2

Ii‘e”f‘

E and the displacement in the x;-direction on the x,-axis is given by

Lttt

e %2

ey u,(0,%;) = g(x;) = - B,(£)d¢, (B.2)
o -

l“el.

Dl where B,(x,) 1is the dislocation density. Since crack surfaces are
-5. traction-free, with the farfield stresses applied, the following integral
gd PP g g
e
] :: equation defines the dislocation density:
ot

| 1 1(§)
G ox 1 - v I - x2d§ + p(x,) = 0, -a < x; < a, (B.3)
D‘::l;: -a
)
‘ \ where p(x,) is the traction on the x,-axis due to farfield stress.
b

J 3 A solution of (B.3) singular at x, = *a is given Dby (e.g.,
,9‘;.t'
i Muskhelishvili, 1953)

]

A

R 11
il By(x;) = T x2 Jaz- ng{z I fa’- - P(E)df + C}, (B.4)
B
AW where C is a constant yet to be determined by another boundary condition.
”""‘. y y y

ot
FETMA! &

:’:‘3‘: In this case, the farfield stress is zero, but the crack is dislocated at
,'l: ,Pl
- X2 = &,
E‘:';:
N P(x) = 0, [w](a) = g,. (B.5)
L
Ry
- From (B.2), (B.4), and (B.5), we have

OO
;::::
DO
a:':f - 154 -
et

b
«f
R
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81 1 . (B.6)

Bi(xp) = “x Ja?- x2
Note that the condition [u;] = O for -a > x, is automatically satisfied by

this array of dislocations. Substituting (B.6) into (B.l), we obtain the

normal stresses on x; = 0,

g sgn(x,)
1u(%,0) = -5 T T Wikl - a), (B.7)

where H(x) is the Heaviside step function. The stress intensity factor at

X, * -a now is

31 -v Jea (B.8)

From (B.2),(B.5), and (A.1), we compute the strain components in the 1local

coordinate system as follows:

€41 = 814,

(B.9)
£ = €31 = &5 = 0.

Note that both g; and a are dimensionless; see Appendix A.

Now consider the Mode II crack displacement. If the concentrated gap

at x, = a is denoted by g,, we obtain

1

In our particular problem,

gt =—bsin § + d cos 4,

g = bcos 8 - d sin 4, (B.11)

a =2
5
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Thus, considering that we have a pair of dislocated cracks, the strain

components in the local coordinate system are given by

bl 2sin § cos § df 2cos 8 -sin @
sc'fz[coso 0 ]+f2|:-sin9 0 } (B.12)

The transformation to the global coordinate system is made with

_ cos (8 + ¢) sin (8 + ¢)
I [ -sin (4 + ¢) cos (8 + ¢) ]' (B.13)
and we obtain
£ = sz_l_ -2sin ¢cos(f + ¢) cos(8 + 2¢) W
~c 2 cos(8 + 2¢) 2cos ¢sin(fd + ¢)
i ] (B.14)
+ fdz-l— 2cos ¢cos(f + ¢) sin(d + 2¢) ]
2 sin(f + 2¢) 2sin ¢sin(d + ¢) !

in the global coordinate system.
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APPENDIX C: Strains Due to Crack Displacement Caused by Applied Stresses

Under the farfield stresses T and S, the crack opening displacements

are given by
C g
[u] - 2T—1——;i Ja/n-x,
_ (€.1)
o [u] = 28— 1 = (/2.

Q;ﬁ In our particular problem, T = o:a and § = g:g/2. Therefore, after

integrating, the strains in the local coordinate system are expressed as

&!'E:; 1l - v 4 gﬁ

xR? 0 . (C.2)

0

*
1Q1Q
™l

Using (B.11), we have the expression in the global coordinate system,

R -
3 €, = f«lsT"«ﬁ[A(g:g)g + (a:8)8]. (C.3)
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) APPENDIX D: Stress Intensity Factor of a Dislocated Crack

Consider the case where the crack opening displacement mnormal to the
;:5 flaw 1is =zero. By use of (B.8), the Mode I stress intensity factor of a

dislocated crack of length £ is obtained to be

¢ om B Db .2 3
. Ky T it g.g/ 5 - (D.1)

Since this expression is singular when £ = 0, we replace it by the following

it non-singular form

&4, 1 nd

N K, = —£& b+ oia)E>, (D.2)
‘é I L-v fon(2 + 2*) ~'~7 2

i)

o and seek to estimate 2" such that at £ = 0%, K{ =K;. When £ ~ 0, the

;“‘: average slip of the preexisting flaw equals the average Mode II crack
!

& displacement, and is given by

g_i 62(‘ . )l-VJ2 2d__1_l'u . B3
. 2e . 0Py - T, . c? - x? dx 2 " xc(o:p, -(B.3)

, W On the other hand, when 2 = 0, (2.9a) reduces to

“?. K; = J:C" (g:pp, - 7.) sin 4, (D.4)

Ky which is maximum at § = n/2. From (D.2), (D.3), and (D.4) with § = n/2, &**

is determined to be

2
[ - n
& o~ £,

s 35 (D.5)

We simply generalize this result when dilatancy d is included. The final

.,:':,g form of K;' then is

£
L

f_-‘):. K' = £ L (b sin 8 + d cos §) + g:a/

D.6
. L-v Jox(a + 2™ (-6
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1 ol APPENDIX E: Some Basic Equations in Loading

‘aﬁ--l 2 (o: -r)sin&-a'al
:.\‘:' a4 2 (x(2 + 2%)}3/2 g.P2 c gia 7;2 ’

. dK
y - 2 (g:pp - 7.) cos § + og:8J/n2,
3;:.‘ a6 Jr(R + 2% - - =

£ 2 (b sin 4 + d cos 0)-g_:g_ 1

AT S §
a4 2 11 - v (2x(8 + £*))3/2
[/

9K’ 1 . 94
" 3% - T T (b cos § - d sin 9) + g.g/T,

[t

e S 1 (sin 8 + ¢(dy - d) cos )
i b L-v fon(a + 2 0 '

ER 3 aKI aKI' 31(1 3 3KI' 8 3KI 3KI' 3KI 3 aKI'
e af ~ 323073 * 39 a: ) " 3: 3 238 " ab 9i 38 )

al 8 9K 3Ky Ky 5 8K, g 8K, 8K’ 8K, 5 3K’

s Y] 36 <38 '3 *t 39 36 b’ "3 30 258 " b a6 ag )

a1 8 9Ky OKy' 9Ky 5 OKy' 5 AKy 3K 3Ky 5 9K’
R ab "5 39 '3 *3 a5 ) " ab 3> 38 b ab a8 )
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b, a_, 9K n 2
: YA T

: 5 L
2+ 2z @Rz T TS cos B 8 B

“E‘ 31(1 n . P
() "7 (r(d + 2oz S0

T 1 - o (b cos 4 - d sin 8) - o:p

!
5‘% 6 (aKI _ . m 2 1
[ 2 {2”(2 + 2**),3/2 - - ,/21[2 '

o, 8 9K’

. S 2
2

b e 3b - 1 - v (2"(2 + I*w)}alz{Sln 6 + f(do - d)COS 0):

_‘?__(Eﬁ) - 2 (0:py - 7.) sin 6 + o:v /x4
38 * 38 ,/1\'(2 + ga) ~'K2 c -1 !

] EIPELS SO L
a6~ 36 1-v Jom(a + 2%

(b sin 6 + d cos 0) + o1y /=

g - S 1
a9 * ab 1 -v Jax(e + 2*)

{cos 8 - ¢(dy - 4) sin 4},

o0y 3K 2
X 2 () - - rsin 0,

- 3 Jr(d + 2%
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A S ¢?
ab L-v Jon(a + 2

(dy - d) cos 4,

b, = -a 5
23--1‘_‘./ 1 = {sin 8 + ¢(d, - d)cos 4}
J2m(8 + £**)
X (j;zz%%;:; cos 8 + B /n2)
+/7r72;1F r.sin 9./%‘;@
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NG APPENDIX F: Some Basic Equations in Unloading

In the case of unloading,
M the following quantities are different from those of

Q:JQ the loading case:
A

) ® _ = 2 (0ips + 1) sin 0 - oia i
M 31 2 | (m(e + gryyuz (TR T T ST 2% g |

K, 2

- ——=—— (g:p,’ + 1,) cos 8 + o:8/nL,
R a8 Jr(2 + £ = P2 2:8

aK
L. —21 ;siny.

s d  Ixp s+t °
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APPENDIX G: Stress Intensity Factor in Unloading

Equation (2.25) with K; defined by (2.24a),
may be explained in the following way.
At the end of a loading regime when
the applied farfield stresses are o,,,,
the residual stress on the preexisting flaw

is given by

Onax-P2 - T¢- (G.1)

Here, r, is the maximum shear stress experienced by the flaw during this
loading regime. Backsliding 1is considered to occur when this residual

stress overcomes the frictional and cohesive resistance of the flaw, 1i.e

when

Tp - 0P = 7, - BOIP;. (G.2)
At the end of a loading regime, we have

Ky = K{ = ]n(l%lT) ToSin 0 + o, 0 /7. (G.3)
Therefore, at the onset of backsliding, the equality in (G.2) yields

Ki = K;. (G.4)

The essential difference between (2.24a) and (2.10a) is due to the t. rms
associated with the farfield applied stress, i.e., g:g,/(rl/Z) and o:a /(n2).
This difference stems from the fact that the computation of the stress
intensity factor in the presence of a gap is for a crack of length £,

whereas that associated with the force F is for a crack of length 2¢£.
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Because tension cracks grow in the the maximum compressive stress direction,
this difference is quite small. Even for extreme cases, e.g., just after
crack nucleation, £ is small and hence this term is very small. We may

therefore use the expression (2.25) and (2.26) with K; defined by (2.24a),

in order to ensure a consistent formulation without loss of accuracy.
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APPENDIX H: Partially Closed Dislocated Crack

We consider the case shown in Fig. B.1. In this case, the integral

equation corresponding to Eq. (B.3) becomes

* B,(§) l -v

E xzde - 2x T. (H.1)

If we solve this equation under the condition that o,, is bounded at x, = -a

and unbounded at x, = a, we obtain (e.g., Muskhelishvili, 1953)

1 -, Jat+x

B = 2T . H.2
1(%) T (H.2)
After integration of (B.2), the crack opening displacement is given by
l‘y Py _lxz n /] 2
(u,](x,) = e 2T [ a sin S tag- Ja? - %2 1. (H.3)
The condition at x, = a yields
1w B
a T 22 1 -v T (H.4)
Apparently, this result is reasonable only when T < O. In our particular
problem,
gi=bsinfd +dcos §, T= g:a. (H.S)

Thus, integration of the crack opening displacement leads to the following

expression for the strain component ¢,;, in the local coordinate system:

__fi_y_

2
€1, v 1 - v (Z:S) (b sin 4 + d cos 8)2. (H.6)

The strain component ¢,, requires no modification when we assume no
friction on tension cracks. Considering the contribution by the farfield

stresses as well as the dislocation array, we obtain
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£ 4y b 1 -v .. H
€2 = f5(bcos § - dsing) + £ 85 n22(0:p) (H.7)

in the local coordinate system. The transformation to the global coordinate

system is done by Eq. (B.13). In the global coordinate system, we hence

have

1 B 1 s 2
2x 1 - v (g:@) (b sin § + d cos §)?a

L =-f

2
+ £ (bcos 6 - dsin §)f (H.8)

+ £ 2 (a:9)8.
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Table 1: Instantaneous compliance, at various loading and unloading states.

o1 /72 e /(rd/m) - #Duny HD1y2a . #Dazpp | wDapyy | kDyyy,

0" 0 0.375

-0.125 [ 0.375 -0.125 | 0.25

L TR N
t
i
I
1

3.68 1.42 0.421 | -0.212 ! 0.462 ' -0.171 | 0.257
7.46 3.21 0.483 | -0.652 ' 3.775 ' -0.510 | 0.331
13,1 5.99 10.391 | -0.391 | 27.6 ' -1.18 | 2,368
5.28t 2.95 0.472 | -1.03 14.2 -0.648 | 2.657

* Initial elastic loading
*% Upon unloading
t Unloading with backsliding
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Figure 3 (a)
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Figure 4 (a)




Figure 4 (b)
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Figure 5
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Figure 7
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o Zoback and Byerlee (1975)
4.0 X Io-s

Figure 9 (b)

[ ]
axial strain
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Figure B.1
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